首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Olfactory ensheathing cells (OECs) represent an exciting possibility for promoting axonal regeneration within the injured spinal cord. A number of studies have indicated the ability of these cells to promote significant reactive sprouting of injured axons within the injured spinal cord, and in some cases restoration of functional abilities. However, the cellular and/or molecular mechanisms OECs use to achieve this are unclear. To investigate such mechanisms, we report for the first time the ability of OECs to promote post-injury neurite sprouting in an in vitro model of axonal injury. Using this model, we were able to differentiate between the direct and indirect mechanisms underlying the ability of OECs to promote neuronal recovery from injury. We noted that OECs appeared to act as a physical substrate for the growth of post-injury neurite sprouts. We also found that while post-injury sprouting was promoted most when OECs were allowed to directly contact injured neurons, physical separation using tissue culture inserts (1 mm pore size, permeable to diffusible factors but not cells) did not completely block the promoting properties of OECs, suggesting that they also secrete soluble factors which aid post-injury neurite sprouting. Furthermore, this in vitro model allowed direct observation of the cellular interactions between OECs and sprouting neurites using live-cell-imaging techniques. In summary, we found that OECs separately promote neurite sprouting by providing a physical substrate for growth and through the expression of soluble factors. Our findings provide new insight into the ability of OECs to promote axonal regeneration, and also indicate potential targets for manipulation of these cells to enhance their restorative ability.Received 19 January 2004; received after revision 8 March 2004: accepted 17 March 2004  相似文献   

2.
Olfactory ensheathing cell (OEC) transplantation emerged some years ago as a promising therapeutic strategy to repair injured spinal cord. However, inhibitory molecules are present for long periods of time in lesioned spinal cord, inhibiting both OEC migration and axonal regrowth. Two families of these molecules, chondroitin sulphate proteoglycans (CSPG) and myelin-derived inhibitors (MAIs), are able to trigger inhibitory responses in lesioned axons. Mounting evidence suggests that OEC migration is inhibited by myelin. Here we demonstrate that OEC migration is largely inhibited by CSPGs and that inhibition can be overcome by the bacterial enzyme Chondroitinase ABC. In parallel, we have generated a stable OEC cell line overexpressing the Nogo receptor (NgR) ectodomain to reduce MAI-associated inhibition in vitro and in vivo. Results indicate that engineered cells migrate longer distances than unmodified OECs over myelin or oligodendrocyte-myelin glycoprotein (OMgp)-coated substrates. In addition, they also show improved migration in lesioned spinal cord. Our results provide new insights toward the improvement of the mechanisms of action and optimization of OEC-based cell therapy for spinal cord lesion.  相似文献   

3.
4.
目的观察成年大鼠脊髓损伤后内源性神经前体细胞的增殖与分化,探讨内源性神经前体细胞的自然变化规律。方法制作脊髓压迫损伤模型,Brdu腹腔注射标记神经前体细胞,免疫荧光法(Immunofluoreseence)检测大鼠脊髓Brdu、GFAP、MBP阳性细胞数的变化。结果 1)正常组可观察到少量Brdu阳性细胞,脊髓损伤后Brdu阳性细胞显著增加(p0.05),并在第7天达到最大值,21天时仍高水平表达。2)正常组可见少量Brdu/GFAP和Brdu/MBP阳性细胞,脊髓损伤后Brdu/GFAP,Brdu/MBP双标阳性细胞数显著增加(p0.05)。结论脊髓损伤后神经前体细胞的数量在第7天达到最大值,我们认为,一周内可能是神经前体细胞增殖分化调控的关键时期。此外,新生星形胶质细胞和少突胶质细胞大量增殖,并与神经前体细胞的迁移、后肢功能恢复表现出一定的同步性,提示新生胶质细胞可能参与了脊髓损伤后神经功能的修复作用。  相似文献   

5.
Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron–glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.  相似文献   

6.
Secondary damage following spinal cord injury leads to non-reversible lesions and hampering of the reparative process. The local production of pro-inflammatory cytokines such as TNF-α can exacerbate these events. Oligodendrocyte death also occurs, followed by progressive demyelination leading to significant tissue degeneration. Dental stem cells from human apical papilla (SCAP) can be easily obtained at the removal of an adult immature tooth. This offers a minimally invasive approach to re-use this tissue as a source of stem cells, as compared to biopsying neural tissue from a patient with a spinal cord injury. We assessed the potential of SCAP to exert neuroprotective effects by investigating two possible modes of action: modulation of neuro-inflammation and oligodendrocyte progenitor cell (OPC) differentiation. SCAP were co-cultured with LPS-activated microglia, LPS-activated rat spinal cord organotypic sections (SCOS), and LPS-activated co-cultures of SCOS and spinal cord adult OPC. We showed for the first time that SCAP can induce a reduction of TNF-α expression and secretion in inflamed spinal cord tissues and can stimulate OPC differentiation via activin-A secretion. This work underlines the potential therapeutic benefits of SCAP for spinal cord injury repair.  相似文献   

7.
Investigations into mechanisms that restrict the recovery of functions after an injury to the brain or the spinal cord have led to the discovery of specific neurite growth inhibitory factors in the adult central nervous system (CNS) of mammals. Blocking their growth-suppressive function resulted in disinhibition of axonal growth, i.e. growth of cultured neurons on inhibitory CNS tissue in vitro and regeneration of injured axons in vivo. The enhanced regenerative and compensatory fibre growth was often accompanied by a substantial improvement in the functional recovery after CNS injury. The first clinical studies to assess the therapeutic potential of compounds that neutralize growth inhibitors or interfere with their downstream signalling are currently in progress. This review discusses recent advances in the understanding of how the ‘founder molecule’ Nogo-A and other glialderived growth inhibitors restrict the regeneration and repair of disrupted neuronal circuits, thus limiting the functional recovery after CNS injuries. Received 5 April 2007; received after revision 28 September 2007; accepted 1 October 2007  相似文献   

8.
The thyroid hormone T3 regulates differentiation, growth, and development. We demonstrated that methionine adenosyltransferase 1A (MAT1A) was positively regulated by T3 identified by cDNA microarray previously. The expression of the MAT1A was upregulated by T3 in hepatoma cell lines overexpressing thyroid hormone receptors (TRs). Additionally, these findings indicate that MAT1A may be regulated by CCAAT/enhancer binding protein (C/EBP). The critical role of the C/EBP binding sites was confirmed by the reporter or chromatin immuno-precipitation (ChIP) assay. In addition, C/EBP was upregulated in hepatoma cells after T3 treatment and ectopic expression of MAT1A inhibited cell migration and invasion in J7 hepatoma cells. Conversely, knockdown of MAT1A expression increased cell migration. Together, these findings suggest that the expression of the MAT1A gene is mediated by C/EBP and is indirectly upregulated by T3. Finally, TR was downregulated in a small subset of hepatocellular carcinoma cells concomitantly reduced the expression of C/EBPα and MAT1A.  相似文献   

9.
Newly generated olfactory receptor axons grow from the peripheral to the central nervous system aided by olfactory ensheathing cells (OECs). Thus, OEC transplantation has emerged as a promising therapy for spinal cord injuries and for other neural diseases. However, these cells do not present a uniform population, but instead a functionally heterogeneous population that exhibits a variety of responses including adhesion, repulsion, and crossover during cell–cell and cell–matrix interactions. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical gradients. Here, we demonstrated that rodent OECs express all the components of the Nogo receptor complex and that their migration is blocked by myelin. Next, we used cell tracking and traction force microscopy to analyze OEC migration and its mechanical properties over myelin. Our data relate the decrease of traction force of OEC with lower migratory capacity over myelin, which correlates with changes in the F-actin cytoskeleton and focal adhesion distribution. Lastly, OEC traction force and migratory capacity is enhanced after cell incubation with the Nogo receptor inhibitor NEP1-40.  相似文献   

10.
Olfactory ensheathing cells have been used in several studies to promote repair in the injured spinal cord. However, cellular interaction between olfactory ensheathing cells and glial cells induced to be reactive in the aftermath of injury site has not been investigated. Using an in vitro model of astrogliosis, we show that reactive astrocytes expressed significantly less glial fibrillary acidic protein (GFAP) when cultured both in direct contact with olfactory ensheathing cells and when the two cell types were separated by a porous membrane. Immunofluorescence staining also suggested that reactive astrocytes showed decreased chondroitin sulfate proteoglycans in the presence of olfactory ensheathing cells, although the reduction was not statistically significant. No down-regulation of GFAP was observed when reactive astrocytes were similarly cultured with Schwann cells. Cell viability assay and bromodeoxyuridine uptake showed that proliferation of reactive astrocytes was significantly increased in the presence of olfactory ensheathing cells and Schwann cells. Received 27 February 2007; received after revision 30 March 2007; accepted 3 April 2007  相似文献   

11.
Central nervous system stem cells in the embryo and adult   总被引:19,自引:0,他引:19  
The central nervous system is generated from neural stem cells during embryonic development. These cells are multipotent and generate neurons, astrocytes and oligodendrocytes. The last few years it has been found that there are populations of stem cells also in the adult mammalian brain and spinal cord. In this paper, we review the recent development in the field of embryonic and adult neural stem cells. Received 26 March 1998; received after revision 27 April 1998; accepted 27 April 1998  相似文献   

12.
Axons of primary olfactory neurons are intimately associated with olfactory ensheathing cells (OECs) from the olfactory epithelium until the final targeting of axons within the olfactory bulb. However, little is understood about the nature and role of interactions between OECs and axons during development of the olfactory nerve pathway. We have used high resolution time-lapse microscopy to examine the growth and interactions of olfactory axons and OECs in vitro. Transgenic mice expressing fluorescent reporters in primary olfactory axons (OMP-ZsGreen) and ensheathing cells (S100ß-DsRed) enabled us to selectively analyse these cell types in explants of olfactory epithelium. We reveal here that rather than providing only a permissive substrate for axon growth, OECs play an active role in modulating the growth of pioneer olfactory axons. We show that the interactions between OECs and axons were dependent on lamellipodial waves on the shaft of OEC processes. The motility of OECs was mediated by GDNF, which stimulated cell migration and increased the apparent motility of the axons, whereas loss of OECs via laser ablation of the cells inhibited olfactory axon outgrowth. These results demonstrate that the migration of OECs strongly regulates the motility of axons and that stimulation of OEC motility enhances axon extension and growth cone activity.  相似文献   

13.
14.
The growth and guidance of primary olfactory axons are partly attributed to the presence of olfactory ensheathing cells (OECs). However, little is understood about the differences between the subpopulations of OECs and what regulates their interactions. We used OEC-axon assays and determined that axons respond differently to peripheral and central OECs. We then further purified OECs from anatomically distinct regions of the olfactory bulb. Cell behaviour assays revealed that OECs from the olfactory bulb were a functionally heterogeneous population with distinct differences which is consistent with their proposed roles in vivo. We found that the heterogeneity was regulated by motile lamellipodial waves along the shaft of the OECs and that inhibition of lamellipodial wave activity via Mek1 abolished the ability of the cells to distinguish between each other. These results demonstrate that OECs from the olfactory bulb are a heterogeneous population that use lamellipodial waves to regulate cell–cell recognition.  相似文献   

15.
16.
17.
Hematopoietic stem cells (HSC) isolated from umbilical cord blood (UCB) were treated with ionizing radiation (IR) and sensitivity and IR induced checkpoints activation were investigated. No difference in the sensitivity and in the activation of DNA damage pathways was observed between CD133+ HSC and cells derived from them after ex vivo expansion. Chk1 protein was very low in freshly isolated CD133+ cells, and undetectable in ex vivo expanded UCB CD133+ cells. Chk1 was expressed only on day 3 of the ex vivo expansion. This pattern of Chk1 expression was corroborated in CD133+ cells isolated from peripheral blood apheresis collected from an healthy donor. Treatment with a specific Chk1 inhibitor resulted in a strong reduction in the percentage of myeloid precursors (CD33+) and an increase in the percentage of lymphoid precursors (CD38+) compared to untreated cells, suggesting a possible role for Chk1 in the differentiation program of UCB CD133+ HSC.  相似文献   

18.
19.
The small G protein Rho subfamily controls several cellular events such as growth, movement, proliferation and differentiation by rearranging actin and cytoskeleton proteins. Most of these effects are mediated by the activation of growth factor and extracellular matrix molecule receptors, suggesting a role for Rho molecules in the transduction pathway of these receptors. Despite the importance of Rho peptides in fundamental cellular events, data on their subcellular immunolocalisation are sparse: here we investigated the expression and subcellular localisation of RhoA in resting (cultured on plastic) and activated (Matri-cell or hepatocyte growth factor) MDCK cells by immunoperoxidase and immunogold techniques. Resting MDCK cells contain detectable amounts of RhoA mainly localised in the cytoplasm; RhoA expression is significantly enhanced by Matri-cell substrates that promote translocation of RhoA at the membrane level. This enhancing effect is reduced after exposure to hepatocyte growth factor.  相似文献   

20.
Human bone marrow-derived mesenchymal stem cells (MSC) home to injured tissues and have regenerative capacity. In this study, we have investigated in vitro the influence of apoptotic and necrotic cell death, thus distinct types of tissue damage, on MSC migration. Concordant with an increased overall motility, MSC migrated towards apoptotic, but not vital or necrotic neuronal and cardiac cells. Hepatocyte growth factor (HGF) was expressed by the apoptotic cells only. MSC, in contrast, revealed expression of the HGF-receptor, c-Met. Blocking HGF bioactivity resulted in significant reduction of MSC migration. Moreover, recombinant HGF attracted MSC in a dose-dependent manner. Thus, apoptosis initiates chemoattraction of MSC via the HGF/c-Met axis, thereby linking tissue damage to the recruitment of cells with regenerative potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号