首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
设Kn(F)是域F上所有n×n交错矩阵构成的线性空间.如果一个算子f:Kn(F)→Kn(F)满足对所有的A,B∈Kn(F)有f(A+B)=f(A)+f(B)并且对任意的X∈Kn(F)有rankf(X)=rankX,则称f是Kn(F)上的加法秩保持.当n是不小于4的整数且F任意时,证明了f是Kn(F)上的加法秩保持当且仅当存在非零的纯量γ、非奇异的n×n矩阵P和域F的单自同态δ满足或者f:[aij]|→αP[aijδ]PT,或者n=4且f:[aij]|→αP([aiδj])PT,其中:K4(F)→K4(F)表示对换(1,4)和(2,3)位置元素及(4,1)和(3,2)位置元素的算子.  相似文献   

2.
本文讨论方程组f_x+Mf_y=Af+g,(*)其中M是无实特征值的常值m×m矩阵;f、g是m×s矩阵值函数;A是m×m矩阵值函数,类似于Vekua讨论广义解析函数那样,我们得到了(*)的解的一系列函数论性质。  相似文献   

3.
记Mn(F)为域F上所有n×n矩阵的集合,其中n2。设{fij|i,j∈[1,n]=:{1,2…n}}是域F上的函数,如果映射f:Mn(F)→Mn(F)满足f:A a[fij(aij)],A=[aij]∈Mn(F),则称f是由函数{fij}所诱导的映射。如果诱导映射f:Mn(F)→Mn(F)满足A2=In(f(A))2=In,则称此诱导映射是保对合的。刻画Mn(F)上保对合的诱导映射形式,推广了保矩阵逆的诱导映射结果;最后提出两个开问题。  相似文献   

4.
域上2×2对称矩阵空间的加法秩保持   总被引:5,自引:2,他引:3  
令F是一个域,n是一个正整数.Sn(F)记F上所有n×n对称矩阵的集合.若一个算子fSn(F)→Sn(F)满足对任意的A,B∈Sn(F)都有f(A+B)=f(A)+f(B),则称之为加法的;若对任意的X∈Sn(F)都有rankf(X)=rankX,则称f为Sn(F)上的秩保持.当n≥3及F为任意域时,Sn(F)上的所有加法秩保持已被作者在[4]中确定.这里,对于任意的F,S2(F)上所有的满足对每个X∈S2(F)\{xD12|x∈F\{0}}都有rankf(X)=rankX的加法算子的一般形式被确定,由此S2(F)上的所有加法秩保持被刻划.  相似文献   

5.
矩阵空间之间的秩的线性保持   总被引:1,自引:0,他引:1  
设m,n是正整数,n≥2,F是包含至少三个元素的域.Mn(F)记F上所有n阶矩阵构成的线性空间,Sn(F)记F上所有n阶对称矩阵构成的线性空间.设V和W是Mn(F)的两个子空间.如果线性算子fV→W满足rankf(X)=rankX对于所有的X∈V成立,则称f是从V到W的秩的线性保持.证明了f是从Sn(F)到Mm(F)的秩的线性保持的充分必要条件是n≤m且存在非奇异矩阵U,V∈Mm(F)满足f(A)=U(A+0)V对于所有的A∈Sn(F)成立.由此,确定了所有的从Sn(F)到Sm(F)及从Mn(F)到Mm(F)的秩的线性保持的一般形式.  相似文献   

6.
设A是m×n(m≥n)且秩为r的复矩阵.存在m×n次酉矩阵Q和n×n半正定矩阵H使得A=QH,此分解称为A的广义极分解.运用奇异值分解,给出了乘法扰动下,矩阵的广义极分解在任意酉不变范数下的扰动恒等式.  相似文献   

7.
设F表示域,n是大于等于4的整数.Kn(F)是由域上的所有n阶交错矩阵构成的集合.设fij(i,j=1.2,…,n)是F到F上的映射,f是Kn(F)到Kn(F)的映射并且映射的形式被定义为f:[aij]|→[fij(aij)],(V)[aij]∈Kn(F)则f称为fij(i,j=1,2,…,n)诱导的映射(即导出映射)...  相似文献   

8.
域上保秩1矩阵映射   总被引:1,自引:0,他引:1  
设K是域,m,n是不小于2的整数,Mmn(K)表示K上m×n阶矩阵全体所成集合.设Φij(i=1,2,…,m,j=1,2,…,n)是K上的映射,定义K上由Φij导出的映射Φ如下:Φ:[aij]|→[Φij(aij)],[aij]∈Mmn(K).若Φ将Mmn(K)中的秩1矩阵都映成秩1矩阵,则称Φ是保秩1的,将刻画这种映射的形式.  相似文献   

9.
域上迹零矩阵空间上的线性秩1保持(英文)   总被引:1,自引:1,他引:0  
设F是域,m≥2是正整数,Mn(F)表示域F上所有n×n矩阵构成的线性空间,sln(F)表示Mn(F)的包含所有迹零矩阵的子空间.若线性映射φ:slm(F)→slm(F) 满足φ(sl1m(F))(-C)sl1m(F),则称其为线性秩1保持,其中sl1m(F)定义slm(F)的包含所有秩1矩阵的子集.通过使用数学归纳法证明了:φ:slm(F)→slm(F)是可逆的线性秩l保持的充要条件是存在c ∈F* 和可逆的M ∈Mm(F)使得φ(X)=cMXM-1,(A)X∈slm(F)或φ(X)=cMXT M-1,(A)X ∈slm(F).  相似文献   

10.
设B是0-1布尔代数,μmn记B上所有m×n矩阵的集合.如果两个线性算子f.μmn→μmn和g:μmn→满足对一切存在M-P逆的A∈μmn,都有f(A)+存在并且A+=B当且仅当f(A)+=g(B),则称(f,g)为强保持矩阵M-P逆的共变算子对.刻划0-1布尔代数上强保持矩阵M-P逆的共变算子对的结构.  相似文献   

11.
设IF是域,V是或者域IF上所有m×n矩阵的空间或者是特征不为2及3的域IF上所有n×n对称矩阵的空间.对于每个被固定的正整数s≥2,Qs定义V×V中满足rank(A+B)=rank(A)+rank(B)≤s的所有矩阵对(A,B)的集合.刻划了V上满足ψ(Qs)(∈)Qs的加法映射ψ.当charIF≠2时,也描述了IF上从n×n矩阵空间到p×q矩阵空间保秩加性的线性算子的结构.  相似文献   

12.
本文主要得到下列结果:设F是域,n为整数且n>2,则F是无限域当且仅当对于任意正整数m以及F上行向量皆非零的m×n矩阵A,存在F上元素皆非零的n×1矩阵X,使得AX的元素皆非零。  相似文献   

13.
设F是一个特征不为2的域,Mn(F)是F上的n×n全矩阵空间,称映射T:Mn(F)→Mn(F)保持极小秩,如果mr(T(A))=mr(A),(Y)A∈Mn(F).刻画了同时保持极小秩和某一非奇异双线性函数的变换T的形式.  相似文献   

14.
令Sn(F)是元素个数大于3的域F上的n×n对称矩阵代数。在矩阵代数上定义了一种偏序,称为秩偏序,则T是Sn(F)上的一个保持秩偏序的可逆线性算子当且仅当存在一个可逆矩阵U∈M_n(F),使得T(X)=cUXU~T,X=(X_(ij)∈S_n(F),这里0≠c∈F,作为应用,还确定了S_n(F)上保持秩可加的线性算子。  相似文献   

15.
以Tn(F)表示F上所有n×n上三角矩阵所组成的空间.刻画了Tn(F)上保持秩可加的线性映射.  相似文献   

16.
令SLn(F)是域F上的n级特殊线性群 ,即由所有行列式为 1的n×n矩阵关于矩阵乘法构成的群 .设Gn =SLn(F) ×SLn(F)为特殊线性群的积 .以Mn(F)记F上所有n阶矩阵构成的集合 .文章研究了群Gn在集合Mn(F)上的如下作用 :(P ,Q) ·A PAQt, A∈Mn(F) , (P ,Q)∈Gn,给出了这个作用的轨道分解式 ,并且计算了这个作用作为群表示的特征标 .  相似文献   

17.
曹建兵 《松辽学刊》2007,28(2):49-52
元素为可测函数的函数矩阵在微分方程,概率论,数理统计中都有重要的应用,本文主要讨论当aij(s)是[a,b]→R的可测函数时,对应的A(s)∶[a,b]→n×n阶函数矩阵收敛性质.  相似文献   

18.
矩阵空间上线性保持问题的几个结果   总被引:1,自引:1,他引:0  
设Mn(F)表示域F上所有n×n矩阵构成的线性空间,sln(F)表示Mn(F)的包含所有迹零矩阵的子空间。基于一些现有的结论,刻划了Mn(F)上可逆的线性秩1平方零(平方零、对合)保持,以及Mn(F)上强线性平方零(对合)保持,所获得的结果展示了几类线性保持问题间的关系。  相似文献   

19.
域上对称矩阵空间上的保逆线性映射   总被引:2,自引:1,他引:1  
设F是特征不为2或3的域,n和m是正整数,且n≤m.设Sn(F)为F上n阶对称矩阵空间,Mm(F)为F上m阶全矩阵空间,GLn(F)为F上n阶一般线性群.设f是从Sn(F)到Mm(F)上的线性映射,若f满足f(X)-1=f(X-1),X∈Sn(F)∩GLn(F),则称f为保逆线性映射,并将保逆线性映射的集合记为N-1(Sn(F),Mm(F)).分别刻画了从Sn(F)到Mm(F)和Sn(F)到Sm(F)上的线性映射.  相似文献   

20.
定义设A为m×k阶矩阵,B为k×n阶矩阵,其中矩A的元素aij(i=1.2….m,j=12,…,k)与矩阵B的元素bij(i=1.2,….k,j=1.2,…n)不全为零.定理AB矩阵的乘法运算不满足交换律.对这一定理的证明,传统的教学方式是用纯理论的理性证明.证明过程限于黑板和书本一教学形式枯燥,学生感到乏味,普遍认为难于掌握;学生学习积极性不高,生搬硬套地完成作业,记忆不深,效果较差.caf方式即computerAssistedInstruction方式,就是计算机辅助教学.效果发生了重大变化,学生积极性高涨,产生了学习兴趣,认为这种方式使学习轻松,直观可见,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号