首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 334 毫秒
1.
The dopa analogue 6-fluorodopa (6-FD) used with positron emission tomography (PET) allows in vivo visualization of dopamine and its metabolites in nigrostriatal nerve endings. We have now found abnormal 6-FD scans in four subjects exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). None had parkinsonism. The results suggest subclinical damage to the nigrostriatal pathway. This is the first direct evidence that dopaminergic impairment can exist without clinical deficits. Here we discuss this finding in the context of the hypothesis that Parkinson's disease may stem from clinically silent damage to the substantia nigra, followed by slow attrition of neurones in this region because of its particular vulnerability to cell loss as a normal consequence of ageing.  相似文献   

2.
Evidence for neuromelanin involvement in MPTP-induced neurotoxicity   总被引:5,自引:0,他引:5  
Exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) reproduces certain clinical, pathological, and neurochemical features of Parkinson's disease. MPTP is metabolized by monoamine oxidase Type B to 1-methyl-4-phenylpyridine (MPP+), which is selectively accumulated by high-affinity uptake mechanisms into dopaminergic neurons. Lyden et al. described low-affinity binding of MPTP to synthetic and retinal melanin. We showed that MPP+ binds to neuromelanin with high affinity, suggesting that in MPTP neurotoxicity, MPP+ enters nigral neurons by the dopamine uptake system and binds to neuromelanin, which serves as a depot, continuously releasing MPP+ until it destroys the cells. This model predicts that agents which compete with MPP+ binding to neuromelanin should partially protect the dopamine neurons from MPTP-induced toxicity. The most potent identified competitor for MPP+ binding to melanin is the antimalarial drug chloroquine, which has a high affinity for melanins. In the present study, chloroquine, administered to monkeys in conventional anti-malarial doses before MPTP, protects them from MPTP-induced parkinsonian motor abnormalities, dopamine depletion in the striatum, and neuropathological changes in the substantia nigra.  相似文献   

3.
Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is neurotoxic to cerebral dopaminergic neurones in several animal species, and can cause parkinsonism in man. The mechanism of this action may be indirect. MPTP is oxidized in the brain to a pyridinium species, 1-methyl-4-phenylpyridine (MPP+)6. This oxidation is greatly decreased by inhibition of monoamine oxidase B6, as are the biochemical effects of MPTP in the mouse and its neurotoxicity in the monkey. We now show that MPP+ exerts a powerful neurotoxic action on the nigrostriatal dopamine system of the rodent.  相似文献   

4.
Intake of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) leads to symptoms of Parkinson's disease and produces degeneration of nigrostriatal dopaminergic neurons in humans, giving rise to the hypothesis that this disorder may be caused by endogenous or environmental toxins. Excitation mediated by dicarboxylic amino acids such as L-glutamate or L-aspartate, has been claimed to be involved in pathogenesis of neurodegenerative disorders. We therefore sought to determine whether antagonists active at the NMDA or quisqualate subtypes of L-glutamate receptors prevent toxicity of either MPP+ (1-methyl-4-phenyl-pyridinium ion, the active metabolite of MPTP) or the selective dopaminergic neurotoxin 6-OHDA in the rat substantia nigra pars compacta. We report here that certain selective NMDA antagonists (AP7, CPP, MK-801), but not the preferential quisqualate antagonists CNQX and NBQX, provided short-term (up to 24 h) protection against MPP+ toxicity when coadministered into the substantia nigra. Systemic administration of CPP or MK-801 also offered temporary protection for up to 4 h against MPP+ toxicity. Repeated systemic administration of either compound prolonged protection against MPP+ challenge. Repeated administration for at least 24 h also led to permanent protection, still evident 7 days after intranigral administration of MPP+.  相似文献   

5.
Dopaminergic D-3 binding sites are not presynaptic autoreceptors   总被引:1,自引:0,他引:1  
S E Leff  I Creese 《Nature》1983,306(5943):586-589
Postsynaptic dopamine (DA) receptors have been classified biochemically and pharmacologically into two types: D-1 receptors mediate adenylate cyclase stimulation, demonstrating micromolar affinity for DA and butyrophenone antagonists; D-2 receptors mediate adenylate cyclase inhibition, demonstrating nanomolar affinity for DA and butyrophenone antagonists. D-1 receptors are labelled by 3H-thioxanthene antagonists, while D-2 receptors are labelled by both 3H-agonists and all 3H-antagonists. A third class of dopaminergic binding site, termed D-3, represents high-affinity 3H-agonist binding sites demonstrating low, micromolar, affinity for butyrophenones. In the rat striatum, D-3 sites were decreased 50% by 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal DA pathway, suggesting that such D-3 binding labels presynaptic DA autoreceptors on nigrostriatal terminals. However, nigrostriatal denervation produces a concomitant depletion of striatal DA. Here we demonstrate that a reserpine-induced depletion of DA produces a decrease in D-3 binding comparable to that seen with nigrostriatal denervation, independent of presynaptic terminal degeneration. This loss in binding, or that caused by 6-OHDA lesions, is recovered by preincubating the striatal membranes with DA or with the supernatant from control striatal membrane preparations. We therefore suggest that the loss of D-3 binding following 6-OHDA lesions results from the depletion of endogenous DA rather than the degeneration of terminals and their putatively associated autoreceptors.  相似文献   

6.
 Salsolinol 合成酶是一种催化多巴胺和乙醛生成Salsolinol 的酶,与帕金森病发病机制密切相关。研究发现Salsolinol 合成酶与泛素的氨基酸序列高度相似,只有4 个氨基酸位点有差异。本研究以泛素基因为模板,采用聚合酶链式反应技术对4 个位点进行定点突变,将突变基因片段克隆到载体pET30a-GST 上,构建pET30a-GST-Sal synthase 重组载体,转化BL21 后,IPTG 诱导重组菌表达融合蛋白,经亲和层析柱纯化。结果表明,实现目的位点的定点突变,获得Sal 合成酶基因,成功构建了GST-Sal synthase 原核表达质粒,在大肠杆菌中表达纯化后得到较高纯度的GST-Sal synthase 融合蛋白。  相似文献   

7.
许多因素如活性氧类物质,可引起神经细胞的氧化损伤。而MTH1能够有效防止8-oxoG导致的神经细胞氧化损伤。介绍了神经细胞内氧化损伤发生的机理,阐述了帕金森病MPTP模型中MTH1对纹状体多巴胺能神经元神经末梢的保护作用。  相似文献   

8.
S Halpain  J A Girault  P Greengard 《Nature》1990,343(6256):369-372
In the caudate-putamen the glutamatergic cortical input and the dopaminergic nigrostriatal input have opposite effects on the firing rate of striatal neurons. Although little is known of the biochemical mechanisms underlying this antagonism, one action of dopamine is to stimulate the cyclic AMP-dependent phosphorylation of DARPP-32 (dopamine and cAMP-regulated phospho-protein, of relative molecular mass 32,000 (32K]. This phosphorylation converts DARPP-32 from an inactive molecule into a potent inhibitor of protein phosphatase-1. Here we show that activation of the NMDA (N-methyl-D-aspartate) subclass of glutamate receptors reverses the cAMP-stimulated phosphorylation of DARPP-32 in striatal slices through NMDA-induced dephosphorylation of DARPP-32. Thus, the antagonistic effects of dopamine and glutamate on the excitability of striatal neurons are reflected in antagonistic effects of these neurotransmitters on the state of phosphorylation of DARPP-32. Our results indicate that stimulation of NMDA receptors leads to the activation of a neuronal protein phosphatase, presumably the calcium-dependent phosphatase calcineurin, and show, in an intact cell preparation, that signal transduction in the nervous system can be mediated by protein dephosphorylation.  相似文献   

9.
Ascorbic acid (AA) induced differentiation of neural stem cells (NSCs) into dopaminergic (DAergic) neurons is reported.NSCs derived from rat mesencephalon were maintained and expanded in a defined medium containing mitogens of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF).Compared with the control, ascorbic acid treatment led to more DAergic neuronal differentiation as indicated by the expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT), which are specific markers of dopamine neurons.AA induction also enhanced expression of Nurr1 and Shh.PD98059, an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, could block AA-induced Nurr1, TH and DAT mRNA expression.The results might suggest a new strategy to provide enough dopaminergic cells for the therapy of Parkinson's disease (PD), and Nurr1 and ERK signaling pathway might participate in the AA-induced DAergic differentiation.  相似文献   

10.
11.
In Parkinson's disease, brain dopamine neurons degenerate most prominently in the substantia nigra. Neurotrophic factors promote survival, differentiation and maintenance of neurons in developing and adult vertebrate nervous system. The most potent neurotrophic factor for dopamine neurons described so far is the glial-cell-line-derived neurotrophic factor (GDNF). Here we have identified a conserved dopamine neurotrophic factor (CDNF) as a trophic factor for dopamine neurons. CDNF, together with its previously described vertebrate and invertebrate homologue the mesencephalic-astrocyte-derived neurotrophic factor, is a secreted protein with eight conserved cysteine residues, predicting a unique protein fold and defining a new, evolutionarily conserved protein family. CDNF (Armetl1) is expressed in several tissues of mouse and human, including the mouse embryonic and postnatal brain. In vivo, CDNF prevented the 6-hydroxydopamine (6-OHDA)-induced degeneration of dopaminergic neurons in a rat experimental model of Parkinson's disease. A single injection of CDNF before 6-OHDA delivery into the striatum significantly reduced amphetamine-induced ipsilateral turning behaviour and almost completely rescued dopaminergic tyrosine-hydroxylase-positive cells in the substantia nigra. When administered four weeks after 6-OHDA, intrastriatal injection of CDNF was able to restore the dopaminergic function and prevent the degeneration of dopaminergic neurons in substantia nigra. Thus, CDNF was at least as efficient as GDNF in both experimental settings. Our results suggest that CDNF might be beneficial for the treatment of Parkinson's disease.  相似文献   

12.
 神经免疫在帕金森病(PD)的致病机理中发挥重要的作用,PD 患者的外周血淋巴细胞的数量发生了变化,提示外周免疫系统在PD 的发生发展中发挥一定的作用。但是外周单核细胞(PBMC)在其中发挥的具体作用尚不清楚。外源性神经毒素(MPTP)类似物,内源性神经毒素(NMSal)可能是导致PD 发生的一种因素。研究采用NMSal 损伤的SH-SY5Y与U87 细胞共培养的条件性培养基培养外周单核细胞THP-1,探讨NMSal 损伤的多巴胺能神经元细胞对外周单核细胞的影响。结果表明,该条件性培养基可以降低NMSal 毒性诱导的THP-1 细胞的凋亡、氧化应激水平(MDA 和H2O2)、线粒体的损伤和凋亡相关蛋白FADD、Bax 和caspase3 的表达和活化水平。PD 病人中损伤的多巴胺能神经元与星形胶质细胞的相互作用可能会影响PBMC,进而影响PD 病情的进展。  相似文献   

13.
Mitochondrial metabolism provides precursors to build macromolecules in growing cancer cells. In normally functioning tumour cell mitochondria, oxidative metabolism of glucose- and glutamine-derived carbon produces citrate and acetyl-coenzyme A for lipid synthesis, which is required for tumorigenesis. Yet some tumours harbour mutations in the citric acid cycle (CAC) or electron transport chain (ETC) that disable normal oxidative mitochondrial function, and it is unknown how cells from such tumours generate precursors for macromolecular synthesis. Here we show that tumour cells with defective mitochondria use glutamine-dependent reductive carboxylation rather than oxidative metabolism as the major pathway of citrate formation. This pathway uses mitochondrial and cytosolic isoforms of NADP(+)/NADPH-dependent isocitrate dehydrogenase, and subsequent metabolism of glutamine-derived citrate provides both the acetyl-coenzyme A for lipid synthesis and the four-carbon intermediates needed to produce the remaining CAC metabolites and related macromolecular precursors. This reductive, glutamine-dependent pathway is the dominant mode of metabolism in rapidly growing malignant cells containing mutations in complex I or complex III of the ETC, in patient-derived renal carcinoma cells with mutations in fumarate hydratase, and in cells with normal mitochondria subjected to acute pharmacological ETC inhibition. Our findings reveal the novel induction of a versatile glutamine-dependent pathway that reverses many of the reactions of the canonical CAC, supports tumour cell growth, and explains how cells generate pools of CAC intermediates in the face of impaired mitochondrial metabolism.  相似文献   

14.
S Nedergaard  J P Bolam  S A Greenfield 《Nature》1988,333(6169):174-177
Within the substantia nigra, the dendrites of dopaminergic neurons that project to the striatum appear to play an active and nonclassical role in the physiology of the neuron in that they release transmitter and protein, but little is known of the factors controlling release of substances from these dendrites. In this study, we show that 5-hydroxytryptamine, which is contained in afferent fibres to the substantia nigra, is present in terminals making direct synaptic contact with dopaminergic neurons and also that it has a site-dependent, receptor-mediated, facilitatory effect on a specific dendritic calcium-dependent potential in nigrostriatal neurons in vitro. The ionic and spatial features of this response, which is insensitive to blockade by three different K+-channel antagonists, could correspond to those underlying the dendritic release of dopamine.  相似文献   

15.
目的 应用行为学与分子影像学的方法在体动态评价帕金森病食蟹猴系统性模型的临床变化特征,为药物、干细胞等治疗的临床前研究提供稳定有效的PD灵长类动物模型。方法 7只10~15岁的健康食蟹猴连续静脉注射1-甲基-4-苯基-1,2,3,6-四氢吡啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,MPTP)0.2 mg/kg体质量,诱导系统性PD模型,持续观察PD症状进展3个月,随后给予左旋多巴干预。应用PD评分量表评价动物的临床症状严重程度,用EthoVision动物运动轨迹跟踪系统分析随意运动距离、运动轨迹的变化,用正电子发射断层显像技术(Positron emission tomography,PET)分子显像剂18F-AV-133评估纹状体多巴胺能神经元的功能状态。结果 所有动物在给予MPTP注射14 d后出现了典型的包括震颤、肌僵直、运动迟缓等PD症状,1个月临床评分达到峰值(21.43±5.35)。随后PD症状趋于稳定,连续观察至2个月(18.43±3.87)、3个月(18.14±3.53),与MPTP注射结束时(14.43±1.90)相比,临床评分均显著升高(P<0.05)。在3个月随意运动距离(809.77±401.15)cm较基线(8627.46±5751.04)cm显著降低(P<0.01)。18F-AV-133双侧纹状体平均特异性摄取率(Sur)在3个月时(0.16±0.03)较基线(1.66±0.58)显著降低(P<0.01)。在给予L-Dopa干预后可见PD症状显著改善,临床评分(12.86±3.63)较之模型期显著降低(P<0.05),而随意运动距离则显著增加(P<0.05)。结论 本研究构建的PD食蟹猴系统性模型临床症状持续稳定,纹状体多巴胺能神经损害,对L-Dopa干预有效,全程无自发性恢复,更近似地在体动态模拟了PD的临床特征,以期为PD未来研究提供实验依据。  相似文献   

16.
Understanding the actions of the neurotransmitter dopamine in the brain is important in view of its roles in neuropsychiatric illnesses. Dopamine D1 receptors, which stimulate both adenylyl cyclase and phospholipase C, and D2 receptors, which inhibit them, can nevertheless act synergistically to produce many electrophysiological and behavioral responses. Because this functional synergism can occur at the level of single neurons, another, as yet unidentified, signalling pathway activated by dopamine has been hypothesized. We report here that in Chinese hamster ovary (CHO) cells transfected with the D2 receptor complementary DNA, D2 agonists potently enhanced arachidonic acid release, provided that such release has been initiated by stimulating constitutive purinergic receptors or by increasing intracellular Ca2+. In CHO cells expressed D1 receptors, D1 agonists exert no such effect. When D1 and D2 receptors are coexpressed, however, activation of both subtypes results in a marked synergistic potentiation of arachidonic acid release. The numerous actions of arachidonic acid and its metabolites in neuronal signal transduction suggest that facilitation of its release may be implicated in dopaminergic responses, such as feedback inhibition mediated by D2 autoreceptors, and may constitute a molecular basis for D1/D2 receptor synergism.  相似文献   

17.
首乌制剂对MPTP引起的小鼠帕金森病的防治   总被引:5,自引:0,他引:5  
实验选用成年ICR纯系小鼠,通过对小鼠主动运动以及脑内多巴胺(DA)含量的测定,观察首乌的醇提取物对MPTP引起的小鼠帕金森病的预防与治疗作用。实验发现,注射MPTP后,小鼠主动性活动明显减少,脑内DA含量明显降低,表现出帕金森病的特征。对这些小鼠再注射首乌制剂能促进小鼠的运动,脑内DA的含量得以恢复。若同时注射MPTP和首乌制剂,则小鼠主动性活动时间以及纹状体多巴胺的含量都明显高于单独注射MPTP组。实验提示,MPTP可引起ICR小鼠脑内多巴胺神经元损伤并产生帕金森病症状,而首乌制剂对MPTP的毒性作用有明显的预防作用和一定的治疗作用,这可能与首乌制剂抑制型单腔氧化酶的活性有关。  相似文献   

18.
Park J  Lee SB  Lee S  Kim Y  Song S  Kim S  Bae E  Kim J  Shong M  Kim JM  Chung J 《Nature》2006,441(7097):1157-1161
Autosomal recessive juvenile parkinsonism (AR-JP) is an early-onset form of Parkinson's disease characterized by motor disturbances and dopaminergic neurodegeneration. To address its underlying molecular pathogenesis, we generated and characterized loss-of-function mutants of Drosophila PTEN-induced putative kinase 1 (PINK1), a novel AR-JP-linked gene. Here, we show that PINK1 mutants exhibit indirect flight muscle and dopaminergic neuronal degeneration accompanied by locomotive defects. Furthermore, transmission electron microscopy analysis and a rescue experiment with Drosophila Bcl-2 demonstrated that mitochondrial dysfunction accounts for the degenerative changes in all phenotypes of PINK1 mutants. Notably, we also found that PINK1 mutants share marked phenotypic similarities with parkin mutants. Transgenic expression of Parkin markedly ameliorated all PINK1 loss-of-function phenotypes, but not vice versa, suggesting that Parkin functions downstream of PINK1. Taken together, our genetic evidence clearly establishes that Parkin and PINK1 act in a common pathway in maintaining mitochondrial integrity and function in both muscles and dopaminergic neurons.  相似文献   

19.
The topographic distribution of dopaminergic receptors in the cerebral cortex closely parallels that of the dopaminergic innervation. In the rat, dopaminergic axons which originate in the mesencephalon are confined to a few discrete regions of the neocortex--anterior cingulate cortex, entorhinal cortex, frontal cortex (particularly anteromedial and supragenual areas) and the transitional zone between the neocortex and the pyriform cortex. Moreover, biochemical examinations of processes generally considered to be indicative of dopaminergic neuro-transmission--neuronal uptake of labelled dopamine or dopamine-activation of adenylate cyclase activity--have confirmed a highly restricted locus of action of dopaminergic systems in the cerebral cortex. We describe here data obtained using the 2-deoxyglucose technique in conjunction with conventional neuropharmacological techniques, suggesting that the influence of dopaminergic systems on cortical function extends beyond the known confines of the mesocortical dopaminergic system.  相似文献   

20.
Clark IE  Dodson MW  Jiang C  Cao JH  Huh JR  Seol JH  Yoo SJ  Hay BA  Guo M 《Nature》2006,441(7097):1162-1166
Parkinson's disease is the second most common neurodegenerative disorder and is characterized by the degeneration of dopaminergic neurons in the substantia nigra. Mitochondrial dysfunction has been implicated as an important trigger for Parkinson's disease-like pathogenesis because exposure to environmental mitochondrial toxins leads to Parkinson's disease-like pathology. Recently, multiple genes mediating familial forms of Parkinson's disease have been identified, including PTEN-induced kinase 1 (PINK1; PARK6) and parkin (PARK2), which are also associated with sporadic forms of Parkinson's disease. PINK1 encodes a putative serine/threonine kinase with a mitochondrial targeting sequence. So far, no in vivo studies have been reported for pink1 in any model system. Here we show that removal of Drosophila PINK1 homologue (CG4523; hereafter called pink1) function results in male sterility, apoptotic muscle degeneration, defects in mitochondrial morphology and increased sensitivity to multiple stresses including oxidative stress. Pink1 localizes to mitochondria, and mitochondrial cristae are fragmented in pink1 mutants. Expression of human PINK1 in the Drosophila testes restores male fertility and normal mitochondrial morphology in a portion of pink1 mutants, demonstrating functional conservation between human and Drosophila Pink1. Loss of Drosophila parkin shows phenotypes similar to loss of pink1 function. Notably, overexpression of parkin rescues the male sterility and mitochondrial morphology defects of pink1 mutants, whereas double mutants removing both pink1 and parkin function show muscle phenotypes identical to those observed in either mutant alone. These observations suggest that pink1 and parkin function, at least in part, in the same pathway, with pink1 functioning upstream of parkin. The role of the pink1-parkin pathway in regulating mitochondrial function underscores the importance of mitochondrial dysfunction as a central mechanism of Parkinson's disease pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号