首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
A unifying model for mTORC1-mediated regulation of mRNA translation   总被引:2,自引:0,他引:2  
  相似文献   

2.
The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth and cancer. However, the downstream translationally regulated nodes of gene expression that may direct cancer development are poorly characterized. Using ribosome profiling, we uncover specialized translation of the prostate cancer genome by oncogenic mTOR signalling, revealing a remarkably specific repertoire of genes involved in cell proliferation, metabolism and invasion. We extend these findings by functionally characterizing a class of translationally controlled pro-invasion messenger RNAs that we show direct prostate cancer invasion and metastasis downstream of oncogenic mTOR signalling. Furthermore, we develop a clinically relevant ATP site inhibitor of mTOR, INK128, which reprograms this gene expression signature with therapeutic benefit for prostate cancer metastasis, for which there is presently no cure. Together, these findings extend our understanding of how the 'cancerous' translation machinery steers specific cancer cell behaviours, including metastasis, and may be therapeutically targeted.  相似文献   

3.
eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans   总被引:1,自引:0,他引:1  
  相似文献   

4.
Loss of the promyelocytic leukaemia (PML) tumour suppressor has been observed in several human cancers. The tumour-suppressive function of PML has been attributed to its ability to induce growth arrest, cellular senescence and apoptosis. Here we identify PML as a critical inhibitor of neoangiogenesis (the formation of new blood vessels) in vivo, in both ischaemic and neoplastic conditions, through the control of protein translation. We demonstrate that in hypoxic conditions PML acts as a negative regulator of the synthesis rate of hypoxia-inducible factor 1alpha (HIF-1alpha) by repressing mammalian target of rapamycin (mTOR). PML physically interacts with mTOR and negatively regulates its association with the small GTPase Rheb by favouring mTOR nuclear accumulation. Notably, Pml-/- cells and tumours display higher sensitivity both in vitro and in vivo to growth inhibition by rapamycin, and lack of PML inversely correlates with phosphorylation of ribosomal protein S6 and tumour angiogenesis in mouse and human tumours. Thus, our findings identify PML as a novel suppressor of mTOR and neoangiogenesis.  相似文献   

5.
Kim S  Wong P  Coulombe PA 《Nature》2006,441(7091):362-365
Cell growth, an increase in mass and size, is a highly regulated cellular event. The Akt/mTOR (mammalian target of rapamycin) signalling pathway has a central role in the control of protein synthesis and thus the growth of cells, tissues and organisms. A striking example of a physiological context requiring rapid cell growth is tissue repair in response to injury. Here we show that keratin 17, an intermediate filament protein rapidly induced in wounded stratified epithelia, regulates cell growth through binding to the adaptor protein 14-3-3sigma. Mouse skin keratinocytes lacking keratin 17 (ref. 4) show depressed protein translation and are of smaller size, correlating with decreased Akt/mTOR signalling activity. Other signalling kinases have normal activity, pointing to the specificity of this defect. Two amino acid residues located in the amino-terminal head domain of keratin 17 are required for the serum-dependent relocalization of 14-3-3sigma from the nucleus to the cytoplasm, and for the concomitant stimulation of mTOR activity and cell growth. These findings reveal a new and unexpected role for the intermediate filament cytoskeleton in influencing cell growth and size by regulating protein synthesis.  相似文献   

6.
Protein synthesis involves the translation of ribonucleic acid information into proteins, the building blocks of life. The initial step of protein synthesis is the binding of the eukaryotic translation initiation factor 4E (eIF4E) to the 7-methylguanosine (m(7)-GpppG) 5'?cap of messenger RNAs. Low oxygen tension (hypoxia) represses cap-mediated translation by sequestering eIF4E through mammalian target of rapamycin (mTOR)-dependent mechanisms. Although the internal ribosome entry site is an alternative translation initiation mechanism, this pathway alone cannot account for the translational capacity of hypoxic cells. This raises a fundamental question in biology as to how proteins are synthesized in periods of oxygen scarcity and eIF4E inhibition. Here we describe an oxygen-regulated translation initiation complex that mediates selective cap-dependent protein synthesis. We show that hypoxia stimulates the formation of a complex that includes the oxygen-regulated hypoxia-inducible factor 2α (HIF-2α), the RNA-binding protein RBM4 and the cap-binding eIF4E2, an eIF4E homologue. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis identified an RNA hypoxia response element (rHRE) that recruits this complex to a wide array of mRNAs, including that encoding the epidermal growth factor receptor. Once assembled at the rHRE, the HIF-2α-RBM4-eIF4E2 complex captures the 5'?cap and targets mRNAs to polysomes for active translation, thereby evading hypoxia-induced repression of protein synthesis. These findings demonstrate that cells have evolved a program by which oxygen tension switches the basic translation initiation machinery.  相似文献   

7.
8.
Liver tumor-initiating cells (T-ICs) are thought to be inherently resistant to the cytotoxic effects of chemo- therapy, and can self-renewal and maintain tumor-initiating potential. Therefore, effective anticancer research strategies should target the unique properties of T-ICs. In this study, we found that metformin, a first-line drug of choice for the treatment of type 2 diabetes, inhibited liver T-ICs both in vivo and in vitro. Metformin inhibited the formation of hepato- spheres and epithelial-specific antigen-positive (ESA, CD133+) cell colonies by hepatocellular carcinoma (HCC) cell lines. Metformin also downregulated the expression of several T-IC-related genes which are involved in the signal- ing pathways, governing the self-renewal, proliferation and differentiation of T-ICs. Furthermore, the targeting of liver T-ICs by metformin was PI-3-kinase-Akt-mTOR (PI3K/Akt/ mTOR)-pathway dependent. The PI3K/Akt/mTOR inhibitorLY294002 and rapamycin abolished the inhibitory effect of metformin on CD133+ cells, and the PI3K/Akt/mTOR stimulator EGF promoted the inhibitory effect of mefformin on CD 133+ cells. Metformin also dramatically decreased the tumor volume and number of CD133 expressing tumor cells in a xenograft mouse model. Mefformin exerted a synergistic effect with cisplatin to target both T-ICs and non-T-ICs, and resulted in the smallest tumor volume and lowest number of CD133 expressing tumor cells. This study indicates that the antidiabetic drug metformin could potentially be used in combination therapy with chemotherapeutic agents to improve the treatment of liver cancer.  相似文献   

9.
Phosphoinositide-3-OH kinases (PI(3)Ks) constitute a family of evolutionarily conserved lipid kinases that regulate a vast array of fundamental cellular responses, including proliferation, transformation, differentiation and protection from apoptosis. PI(3)K-mediated activation of the cell survival kinase PKB/Akt, and negative regulation of PI(3)K signalling by the tumour suppressor PTEN (refs 3, 4) are key regulatory events in tumorigenesis. Thus, a model has arisen that PI(3)Ks promote development of cancers. Here we report that genetic inactivation of the p110gamma catalytic subunit of PI(3)Kgamma (ref. 8) leads to development of invasive colorectal adenocarcinomas in mice. In humans, p110gamma protein expression is lost in primary colorectal adenocarcinomas from patients and in colon cancer cell lines. Overexpression of wild-type or kinase-dead p110gamma in human colon cancer cells with mutations of the tumour suppressors APC and p53, or the oncogenes beta-catenin and Ki-ras, suppressed tumorigenesis. Thus, loss of p110gamma in mice leads to spontaneous, malignant epithelial tumours in the colorectum and p110gamma can block the growth of human colon cancer cells.  相似文献   

10.
Mechanisms controlling brain size include the regulation of neural progenitor cell proliferation, differentiation, survival and migration. Here we show that ephrin-A/EphA receptor signalling plays a key role in controlling the size of the mouse cerebral cortex by regulating cortical progenitor cell apoptosis. In vivo gain of EphA receptor function, achieved through ectopic expression of ephrin-A5 in early cortical progenitors expressing EphA7, caused a transient wave of neural progenitor cell apoptosis, resulting in premature depletion of progenitors and a subsequent dramatic decrease in cortical size. In vitro treatment with soluble ephrin-A ligands similarly induced the rapid death of cultured dissociated cortical progenitors in a caspase-3-dependent manner, thereby confirming a direct effect of ephrin/Eph signalling on apoptotic cascades. Conversely, in vivo loss of EphA function, achieved through EphA7 gene disruption, caused a reduction in apoptosis occurring normally in forebrain neural progenitors, resulting in an increase in cortical size and, in extreme cases, exencephalic forebrain overgrowth. Together, these results identify ephrin/Eph signalling as a physiological trigger for apoptosis that can alter brain size and shape by regulating the number of neural progenitors.  相似文献   

11.
The mammalian target of rapamycin, mTOR, forms various protein-protein complexes to regulate cell growth in response to the nutrient and energy status of the cell. Recently, the first crystal structure of large HEAT repeat protein mTOR revealed that the FAT domain interacts with the kinase domain through electrostatic effects and hydrophobic interactions. Based on the structure, the previous researches on how FAT domain regulates mTOR activity are reviewed. DEPTOR is currently known as an endogenous mTOR inhibitor, which may interact with roTOR FAT domain to suppress mTOR activity in vivo. The possible interactions of DEPTOR with the mTOR FAT domain are analyzed, too. In addition, the inhibition mechanism of DEPTOR may be similar to members of HEAT-involved RanGTP complex family, providing new mechanistic insights into mTOR kinase regulation.  相似文献   

12.
Oncogenic kinase signalling   总被引:65,自引:0,他引:65  
Blume-Jensen P  Hunter T 《Nature》2001,411(6835):355-365
Protein-tyrosine kinases (PTKs) are important regulators of intracellular signal-transduction pathways mediating development and multicellular communication in metazoans. Their activity is normally tightly controlled and regulated. Perturbation of PTK signalling by mutations and other genetic alterations results in deregulated kinase activity and malignant transformation. The lipid kinase phosphoinositide 3-OH kinase (PI(3)K) and some of its downstream targets, such as the protein-serine/threonine kinases Akt and p70 S6 kinase (p70S6K), are crucial effectors in oncogenic PTK signalling. This review emphasizes how oncogenic conversion of protein kinases results from perturbation of the normal autoinhibitory constraints on kinase activity and provides an update on our knowledge about the role of deregulated PI(3)K/Akt and mammalian target of rapamycin/p70S6K signalling in human malignancies.  相似文献   

13.
14.
NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling.   总被引:56,自引:0,他引:56  
J A Romashkova  S S Makarov 《Nature》1999,401(6748):86-90
  相似文献   

15.
The c-Myc oncoprotein promotes proliferation and apoptosis, such that mutations that disable apoptotic programmes often cooperate with MYC during tumorigenesis. Here we report that two common mutant MYC alleles derived from human Burkitt's lymphoma uncouple proliferation from apoptosis and, as a result, are more effective than wild-type MYC at promoting B cell lymphomagenesis in mice. Mutant MYC proteins retain their ability to stimulate proliferation and activate p53, but are defective at promoting apoptosis due to a failure to induce the BH3-only protein Bim (a member of the B cell lymphoma 2 (Bcl2) family) and effectively inhibit Bcl2. Disruption of apoptosis through enforced expression of Bcl2, or loss of either Bim or p53 function, enables wild-type MYC to produce lymphomas as efficiently as mutant MYC. These data show how parallel apoptotic pathways act together to suppress MYC-induced transformation, and how mutant MYC proteins, by selectively disabling a p53-independent pathway, enable tumour cells to evade p53 action during lymphomagenesis.  相似文献   

16.
For an epithelium to provide a protective barrier, it must maintain homeostatic cell numbers by matching the number of dividing cells with the number of dying cells. Although compensatory cell division can be triggered by dying cells, it is unknown how cell death might relieve overcrowding due to proliferation. When we trigger apoptosis in epithelia, dying cells are extruded to preserve a functional barrier. Extrusion occurs by cells destined to die signalling to surrounding epithelial cells to contract an actomyosin ring that squeezes the dying cell out. However, it is not clear what drives cell death during normal homeostasis. Here we show in human, canine and zebrafish cells that overcrowding due to proliferation and migration induces extrusion of live cells to control epithelial cell numbers. Extrusion of live cells occurs at sites where the highest crowding occurs in vivo and can be induced by experimentally overcrowding monolayers in vitro. Like apoptotic cell extrusion, live cell extrusion resulting from overcrowding also requires sphingosine 1-phosphate signalling and Rho-kinase-dependent myosin contraction, but is distinguished by signalling through stretch-activated channels. Moreover, disruption of a stretch-activated channel, Piezo1, in zebrafish prevents extrusion and leads to the formation of epithelial cell masses. Our findings reveal that during homeostatic turnover, growth and division of epithelial cells on a confined substratum cause overcrowding that leads to their extrusion and consequent death owing to the loss of survival factors. These results suggest that live cell extrusion could be a tumour-suppressive mechanism that prevents the accumulation of excess epithelial cells.  相似文献   

17.
The fundamental components of many signalling pathways are common to all cells. However, stimulating or perturbing the intracellular network often causes distinct phenotypes that are specific to a given cell type. This 'cell specificity' presents a challenge in understanding how intracellular networks regulate cell behaviour and an obstacle to developing drugs that treat signalling dysfunctions. Here we apply a systems-modelling approach to investigate how cell-specific signalling events are integrated through effector proteins to cause cell-specific outcomes. We focus on the synergy between tumour necrosis factor and an adenoviral vector as a therapeutically relevant stimulus that induces cell-specific responses. By constructing models that estimate how kinase-signalling events are processed into phenotypes through effector substrates, we find that accurate predictions of cell specificity are possible when different cell types share a common 'effector-processing' mechanism. Partial-least-squares regression models based on common effector processing accurately predict cell-specific apoptosis, chemokine release, gene induction, and drug sensitivity across divergent epithelial cell lines. We conclude that cell specificity originates from the differential activation of kinases and other upstream transducers, which together enable different cell types to use common effectors to generate diverse outcomes. The common processing of network signals by downstream effectors points towards an important cell biological principle, which can be applied to the understanding of cell-specific responses to targeted drug therapies.  相似文献   

18.
Yanagisawa S  Yoo SD  Sheen J 《Nature》2003,425(6957):521-525
  相似文献   

19.
Oct4 is mainly expressed in embryonic stem cells(ESCs),germline stem cells,and embryonal carcinoma cells(ECCs)and plays an indispensable role in maintaining the pluripotency and self-renewal of these pluripotent stem cells.Akt serine/threonine kinase,a wellestablished anti-apoptosis and cell survival factor,has also been implicated as an important regulator of stemness.Emerging evidence indicated that Oct4 is reciprocally connected to Akt via a number of routes,and moreover,a direct interaction between Oct4 and Akt has recently been revealed.These components collectively form the Akt–Oct4 regulatory circuit.In this review,we summarize our current knowledge about the Akt–Oct4 regulatory circuit in ESCs and discuss its alterations in ECCs that may underlie the tumorigenesis of pluripotent stem cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号