首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein   总被引:105,自引:0,他引:105  
Adult mammalian axon regeneration is generally successful in the peripheral nervous system (PNS) but is dismally poor in the central nervous system (CNS). However, many classes of CNS axons can extend for long distances in peripheral nerve grafts. A comparison of myelin from the CNS and the PNS has revealed that CNS white matter is selectively inhibitory for axonal outgrowth. Several components of CNS white matter, NI35, NI250(Nogo) and MAG, that have inhibitory activity for axon extension have been described. The IN-1 antibody, which recognizes NI35 and NI250(Nogo), allows moderate degrees of axonal regeneration and functional recovery after spinal cord injury. Here we identify Nogo as a member of the Reticulon family, Reticulon 4-A. Nogo is expressed by oligodendrocytes but not by Schwann cells, and associates primarily with the endoplasmic reticulum. A 66-residue lumenal/extracellular domain inhibits axonal extension and collapses dorsal root ganglion growth cones. In contrast to Nogo, Reticulon 1 and 3 are not expressed by oligodendrocytes, and the 66-residue lumenal/extracellular domains from Reticulon 1, 2 and 3 do not inhibit axonal regeneration. These data provide a molecular basis to assess the contribution of Nogo to the failure of axonal regeneration in the adult CNS.  相似文献   

2.
Nogo-66 receptor antagonist peptide promotes axonal regeneration   总被引:120,自引:0,他引:120  
GrandPré T  Li S  Strittmatter SM 《Nature》2002,417(6888):547-551
Myelin-derived axon outgrowth inhibitors, such as Nogo, may account for the lack of axonal regeneration in the central nervous system (CNS) after trauma in adult mammals. A 66-residue domain of Nogo (Nogo-66) is expressed on the surface of oligodendrocytes and can inhibit axonal outgrowth through an axonal Nogo-66 receptor (NgR). The IN-1 monoclonal antibody recognizes Nogo-A and promotes corticospinal tract regeneration and locomotor recovery; however, the undefined nature of the IN-1 epitope in Nogo, the limited specificity of IN-1 for Nogo, and nonspecific anti-myelin effects have prevented a firm conclusion about the role of Nogo-66 or NgR. Here, we identify competitive antagonists of NgR derived from amino-terminal peptide fragments of Nogo-66. The Nogo-66(1 40) antagonist peptide (NEP1 40) blocks Nogo-66 or CNS myelin inhibition of axonal outgrowth in vitro, demonstrating that NgR mediates a significant portion of axonal outgrowth inhibition by myelin. Intrathecal administration of NEP1 40 to rats with mid-thoracic spinal cord hemisection results in significant axon growth of the corticospinal tract, and improves functional recovery. Thus, Nogo-66 and NgR have central roles in limiting axonal regeneration after CNS injury, and NEP1-40 provides a potential therapeutic agent.  相似文献   

3.
Chondroitinase ABC promotes functional recovery after spinal cord injury   总被引:82,自引:0,他引:82  
The inability of axons to regenerate after a spinal cord injury in the adult mammalian central nervous system (CNS) can lead to permanent paralysis. At sites of CNS injury, a glial scar develops, containing extracellular matrix molecules including chondroitin sulphate proteoglycans (CSPGs). CSPGs are inhibitory to axon growth in vitro, and regenerating axons stop at CSPG-rich regions in vivo. Removing CSPG glycosaminoglycan (GAG) chains attenuates CSPG inhibitory activity. To test the functional effects of degrading chondroitin sulphate (CS)-GAG after spinal cord injury, we delivered chondroitinase ABC (ChABC) to the lesioned dorsal columns of adult rats. We show that intrathecal treatment with ChABC degraded CS-GAG at the injury site, upregulated a regeneration-associated protein in injured neurons, and promoted regeneration of both ascending sensory projections and descending corticospinal tract axons. ChABC treatment also restored post-synaptic activity below the lesion after electrical stimulation of corticospinal neurons, and promoted functional recovery of locomotor and proprioceptive behaviours. Our results demonstrate that CSPGs are important inhibitory molecules in vivo and suggest that their manipulation will be useful for treatment of human spinal injuries.  相似文献   

4.
Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration   总被引:156,自引:0,他引:156  
Fournier AE  GrandPre T  Strittmatter SM 《Nature》2001,409(6818):341-346
Nogo has been identified as a component of the central nervous system (CNS) myelin that prevents axonal regeneration in the adult vertebrate CNS. Analysis of Nogo-A has shown that an axon-inhibiting domain of 66 amino acids is expressed at the extracellular surface and at the endoplasmic reticulum lumen of transfected cells and oligodendrocytes. The acidic amino terminus of Nogo-A is detected at the cytosolic face of cellular membranes and may contribute to inhibition of axon regeneration at sites of oligodendrocyte injury. Here we show that the extracellular domain of Nogo (Nogo-66) inhibits axonal extension, but does not alter non-neuronal cell morphology. In contrast, a multivalent form of the N terminus of Nogo-A affects the morphology of both neurons and other cell types. Here we identify a brain-specific, leucine-rich-repeat protein with high affinity for soluble Nogo-66. Cleavage of the Nogo-66 receptor and other glycophosphatidylinositol-linked proteins from axonal surfaces renders neurons insensitive to Nogo-66. Nogo-66 receptor expression is sufficient to impart Nogo-66 axonal inhibition to unresponsive neurons. Disruption of the interaction between Nogo-66 and its receptor provides the potential for enhanced recovery after human CNS injury.  相似文献   

5.
Wang KC  Koprivica V  Kim JA  Sivasankaran R  Guo Y  Neve RL  He Z 《Nature》2002,417(6892):941-944
The inhibitory activity associated with myelin is a major obstacle for successful axon regeneration in the adult mammalian central nervous system (CNS). In addition to myelin-associated glycoprotein (MAG) and Nogo-A, available evidence suggests the existence of additional inhibitors in CNS myelin. We show here that a glycosylphosphatidylinositol (GPI)-anchored CNS myelin protein, oligodendrocyte-myelin glycoprotein (OMgp), is a potent inhibitor of neurite outgrowth in cultured neurons. Like Nogo-A, OMgp contributes significantly to the inhibitory activity associated with CNS myelin. To further elucidate the mechanisms that mediate this inhibitory activity of OMgp, we screened an expression library and identified the Nogo receptor (NgR) as a high-affinity OMgp-binding protein. Cleavage of NgR and other GPI-linked proteins from the cell surface renders axons of dorsal root ganglia insensitive to OMgp. Introduction of exogenous NgR confers OMgp responsiveness to otherwise insensitive neurons. Thus, OMgp is an important inhibitor of neurite outgrowth that acts through NgR and its associated receptor complex. Interfering with the OMgp/NgR pathway may allow lesioned axons to regenerate after injury in vivo.  相似文献   

6.
研究建立Con A致小鼠免疫性肝损伤动物模型,采用免疫组化染色SP法考察不同剂量波棱瓜子总木脂素对小鼠肝脏组织CD4、CD8、CXCL10、ICAM-1、IRF-1、SOCS1、STAT1蛋白的表达,分析波棱瓜子总木脂素对抑制粘附分子和趋化因子肝内蛋白的表达影响,以期研究讨论藏药波棱瓜子总木脂素对免疫性肝损伤的免疫炎症调节作用.实验结果表明,波棱瓜子总木脂素对Con A致免疫性肝损伤小鼠的CD4、ICAM-1、IRF-1蛋白含量无明显差异;而对CD8、CXCL10、SOCS1和STAT1蛋白的含量有不同程度的降低,显示出通过调节T细胞的免疫功能来保护肝脏.由上述结果可知,波棱瓜子总木脂素具有一定的免疫性炎症调节作用,该作用可能是波棱瓜子总木脂素对肝脏免疫性疾病的部分保护机制.  相似文献   

7.
尹成玉  崔勇  王斌  刘韬  董辉  高杰  高旭超 《科技信息》2011,(31):430-431,449
视神经损伤以视网膜神经节细胞(RGCs)的丢失为主的病理变化导致了视功能障碍,随着一定数量存活的RGCs在合适环境下的修复再生,视功能可有一定的恢复,综述相关研究文献,旨在了解视神经损伤及修复再生可能存在的规律,以及促进其再生的方法,客观评价视功能恢复的情况。  相似文献   

8.
The capacity of the adult brain and spinal cord to repair lesions by axonal regeneration or compensatory fibre growth is extremely limited. A monoclonal antibody (IN-1) raised against NI-220/250, a myelin protein that is a potent inhibitor of neurite growth, promoted axonal regeneration and compensatory plasticity following lesions of the central nervous system (CNS) in adult rats. Here we report the cloning of nogo A, the rat complementary DNA encoding NI-220/250. The nogo gene encodes at least three major protein products (Nogo-A, -B and -C). Recombinant Nogo-A is recognized by monoclonal antibody IN-1, and it inhibits neurite outgrowth from dorsal root ganglia and spreading of 3T3 fibroblasts in an IN-1-sensitive manner. Antibodies against Nogo-A stain CNS myelin and oligodendrocytes and allow dorsal root ganglion neurites to grow on CNS myelin and into optic nerve explants. These data show that Nogo-A is a potent inhibitor of neurite growth and an IN-1 antigen produced by oligodendrocytes, and may allow the generation of new reagents to enhance CNS regeneration and plasticity.  相似文献   

9.
10.
L Havton  J O Kellerth 《Nature》1987,325(6106):711-714
Axons in the central nervous system (CNS) of mammals do not normally regrow if they are cut, which severely limits restoration of function after injury. We have studied the reactions of adult cat spinal alpha-motoneurons after chronic transection of their axons in the periphery by labelling single cells with horseradish peroxidase. Twelve weeks after the operation, about a third of the axotomized cells had developed a 'supernumerary' axon originating from the cell-body region. These supernumerary axons had variable trajectories and termination fields in the ipsilateral spinal cord but generally anomalous projections. Ultrastructural examination shows that they give rise to boutons that form morphologically normal synaptic contacts with neuronal profiles, although they contain dense-cored vesicles not normally seen in central terminals of alpha-motor axons. We conclude that axotomized neurons in the mammalian CNS may be able to form new synaptic contacts by means of supernumerary axons in the absence of local damage.  相似文献   

11.
J D Kocsis  S G Waxman 《Nature》1983,304(5927):640-642
Mammalian myelinated peripheral nerve fibres display a remarkable degree of regeneration following a discrete nerve crush. Nerve crush disrupts the axon cylinder, but leaves the basement membrane of the Schwann cell intact. These intact endoneurial tubes provide pathways to guide the regenerating axon sprouts. After contact with the periphery is established, the regenerating fibres enlarge and myelinate. Conduction velocity recovers to nearly normal and functional recovery is, in many cases, nearly complete. A distinct feature of normal mature myelinated axons is the insensitivity of these fibres to potassium channel blocking agents. In contrast, immature myelinated axons are exquisitely sensitive to the K channel blocking agent 4-aminopyridine (4-AP). Application of 4-AP to immature myelinated fibres leads to a delayed membrane depolarization with action potential burst activity in response to a single stimulus. This sensitivity to 4-AP is attenuated as the fibres mature. Previous studies have demonstrated a sensitivity to 4-AP in regenerating nerve fibres; this sensitivity differentiates the regenerating axon segments from their normal parent axon segments. Such studies have not, however, examined the question of whether regenerated fibres, which have re-established peripheral connections and are functionally active, fully recapitulate the functional organization of normal mature myelinated fibres. We demonstrate here that while sensitivity to the potassium channel blocking agents 4-AP and 3, 4-diaminopyridine (3, 4-DAP) is lost in the normal course of myelinated axon maturation, this property is present in long-term regenerated axons. This suggests that long-term regenerated mammalian axons are characterized by a functional organization that bears a closer resemblance to that of immature myelinated fibres than to that of adult myelinated fibres.  相似文献   

12.
Many high-throughput loss-of-function analyses of the eukaryotic cell cycle have relied on the unicellular yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. In multicellular organisms, however, additional control mechanisms regulate the cell cycle to specify the size of the organism and its constituent organs. To identify such genes, here we analysed the effect of the loss of function of 70% of Drosophila genes (including 90% of genes conserved in human) on cell-cycle progression of S2 cells using flow cytometry. To address redundancy, we also targeted genes involved in protein phosphorylation simultaneously with their homologues. We identify genes that control cell size, cytokinesis, cell death and/or apoptosis, and the G1 and G2/M phases of the cell cycle. Classification of the genes into pathways by unsupervised hierarchical clustering on the basis of these phenotypes shows that, in addition to classical regulatory mechanisms such as Myc/Max, Cyclin/Cdk and E2F, cell-cycle progression in S2 cells is controlled by vesicular and nuclear transport proteins, COP9 signalosome activity and four extracellular-signal-regulated pathways (Wnt, p38betaMAPK, FRAP/TOR and JAK/STAT). In addition, by simultaneously analysing several phenotypes, we identify a translational regulator, eIF-3p66, that specifically affects the Cyclin/Cdk pathway activity.  相似文献   

13.
14.
本研究以长白猪为材料,克隆了STAT4和STAT6基因的cDNA全长,其中STAT4基因cDNA全长2269 bp,编码748个氨基酸的前体蛋白,与人、牛、大鼠、小鼠等哺乳动物STAT4氨基酸序列一致性分别为97%、98%、96%、96%;STAT6基因cDNA全长2637 bp,编码847个氨基酸的前体蛋白,与人、牛、大鼠、小鼠等哺乳动物的氨基酸序列有很高的同源性,分别为93%、95%、88%和87%.采用RT-PCR方法,本研究对家猪STAT4和STAT6基因进行组织表达分析.结果显示:STAT4在所有组织中都有表达,STAT6在心、肝、脾、肺、肾、肌肉、小肠等组织中有表达.此外,本研究已将家猪STAT4和STAT6基因编码区序列克隆到真核表达栽体pcDNA3.1(+)中,并做了初步功能鉴定.  相似文献   

15.
Nogo是一类中枢髓鞘源性抑制蛋白,主要由少突胶质细胞表达,是抑制中枢神经元轴突再生的抑制因子。这些研究成果为探讨CNS损伤的治疗提供了新思路。论文综述了Nogo的结构及在CNS中对神经元轴突再生的抑制作用。  相似文献   

16.
为从基因转录水平解析信号通路对NIH3T3细胞周期进程的调控作用,用小鼠基因表达谱芯片Mouse Genome 4 302.0检测信号通路相关基因表达丰度发现,PI3K,STAT3,钙蛋白酶,Rho家族鸟苷酸激酶和VEGF等5条信号通路的105个基因在该细胞的细胞周期中发生有意义的表达变化.分析基因表达变化预示的信号通路作用表明,上述5条信号通路依次促进G1期、G1/S转换期、S期、G2/M转换期和M期进程.结论:上述5条信号通路促进NIH3T3细胞的细胞周期进程.  相似文献   

17.
R E Kalil  M W Dubin  G Scott  L A Stark 《Nature》1986,323(6084):156-158
Although the influence of electrical activity on neural development has been studied extensively, experiments have only recently focused on the role of activity in the development of the mammalian central nervous system (CNS). Using tetrodotoxin (TTX) to abolish sodium-mediated action potentials, studies on the visual system show that impulse activity is essential both for the normal development of neuronal size and responsivity in the lateral geniculate nucleus (LGN), and for the eye-specific segregation of geniculo-cortical axons. There have been no anatomical studies to investigate the influence of action potentials on CNS synaptic development. We report here the first direct evidence that elimination of action potentials in the mammalian CNS blocks the growth of developing axon terminals and the formation of normal adult synaptic patterns. Our results show that when TTX is used to eliminate retinal ganglion-cell action potentials in the cat from birth to 8 weeks, the connections made by ganglion cell axons with LGN neurones, retinogeniculate synapses, remain almost identical morphologically to those in the newborn kitten.  相似文献   

18.
19.
Lens regeneration in adult newts is a classic example of how cells can faithfully regenerate a complete organ through the process of transdifferentiation. After lens removal, the pigment epithelial cells of the dorsal, but not the ventral, iris dedifferentiate and then differentiate to form a new lens. Understanding how this process is regulated might provide clues about why lens regeneration does not occur in higher vertebrates. The genes six-3 and pax-6 are known to induce ectopic lenses during embryogenesis. Here we tested these genes, as well as members of the bone morphogenetic protein (BMP) pathway that regulate establishment of the dorsal-ventral axis in embryos, for their ability to induce lens regeneration. We show that the lens can be regenerated from the ventral iris when the BMP pathway is inhibited and when the iris is transfected with six-3 and treated with retinoic acid. In intact irises, six-3 is expressed at higher levels in the ventral than in the dorsal iris. During regeneration, however, only expression in the dorsal iris is significantly increased. Such an increase is seen in ventral irises only when they are induced to transdifferentiate by six-3 and retinoic acid or by BMP inhibitors. These data suggest that lens regeneration can be achieved in noncompetent adult tissues and that this regeneration occurs through a gene regulatory mechanism that is more complex than the dorsal expression of lens regeneration-specific genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号