首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正无机/有机杂化光功能材料,包括配合物、金属有机化合物、无机/有机复合物等材料.该类材料兼具有无机和有机材料的优点,已成为非线性光学材料研究领域的一个重要研究方向和热点课题.近年来,在材料的多种非线性光学效应中,双光子吸收效应的研究及应用备受关注.双光子吸收(two photon absorption,简称TPA)是指一个分子或原子可以在同一个量子过程同时吸收两个光子到达激发态,该过程以其特有的三维处理和极高的空间分辨特性、长波激发、短波发射等优点,在三维光信  相似文献   

2.
电离杂质在低温半导体的输运过程中起了一个重要的角色 .因此最近几年对极性半导体 (例如异质结、量子点、量子线和量子阱 )内的极化子效应讨论很多 .一些通常的量子阱往往由极性化合物组成 ,我们需要对其中的电子和光学声子之间的相互作用进行详细研究 ,因为极化子效应能强烈影响异质结构的光学和输运特征 .因而在这样的结构中 ,电子态是通过势阱来描述的 .在低维量子系统 ,由于电子的束缚产生的基态杂质束缚能比体材料相比要大得多 .这个如 Greene和 Bajij[1] 所说的那样 ,量子阱中浅施主杂质的详细研究对杂质能级的性质以及量子阱本身性…  相似文献   

3.
分别采用LLP变分方法和微扰方法研究了圆柱形自由量子线的极化子效应,在计算中考虑了类体纵光学声子模及表面声子模的贡献.结果显示表面声子模在量子线半径较小时产生强烈的极化子效应,而类体模的贡献则随量子线半径的增加速渐趋于三维体材料的结果.分析还发现,对于量子线、量子点等强受限体系,微扰方法得到的结果较量量变分方法的结果合理。  相似文献   

4.
基于电荷离散性的事实,对耗散互感介观金属双环系统进行量子化,给出耦合形式的量子回路方程,研究耗散双环系统中的量子电流增强效应.结果表明,量子电流增强效应不仅存在于无耗散双环系统中,而且在耗散互感金属双环系统中也存在,是一个纯量子效应.  相似文献   

5.
研究了Cu与SiO2组成的渗流系统的电阻率、霍尔系数等电输运特性,该体系临界指数t高于经典渗流理论的预测数值,不同于其它渗流系统.并且在Cux(SiO2)1-x这一非磁性金属系统中,发现了巨霍尔效应(GHE),其数值高于普通金属近3个数量级,为霍尔传感器材料研究提供了新途径.这种非磁性系统中的巨霍尔效应是由界观尺度的量子干涉效应引起的.  相似文献   

6.
随着后摩尔时代的推进,以硅为基础的半导体器件正接近其性能极限.除了不断引入新的器件结构外,设计具有半导体特性的金属量子结构为微电子器件的性能提升提供了全新的解决方案;而打开金属带隙,使其具有栅极可调半导体输运,是实现其应用的关键.以此为目的,自20世纪末以来,多种金属量子结构便逐步被设计与开发,其输运特性的有效调控也被学术界广泛研究.本文回顾了零维量子点、一维纳米线/纳米管、二维材料/人工二维晶格/超导薄膜等不同维度金属量子结构的研究进展;针对这些结构体系,介绍了其各自的能隙调控思想,总结分析了可控输运特性的实现方法与内在机制,对比展示了材料结构的电学性能及应用前景.基于目前报道的研究结果,提出了未来预期的研究方向:开发金属量子结构中输运与自旋关联特性,设计同时传输电荷与自旋信息,且具有栅极可调输运带隙的全金属沟道材料、结构与器件.  相似文献   

7.
近年来硅发光已成为理论和材料研究的一个新热点,a-Si/SiO2多量子阱材料就是人们研制出的一种新的量子结构。有关理论表明,a-Si/SiO2多量子阱中硅层的电子和空穴都受到很强的量子限制效应,硅层能带有可能由体硅的间接带隙转变为准直接带隙,该量子阱材料有可能具有较强的发光特性。  相似文献   

8.
介绍了纳米科技的历史、现状和发展趋势;讨论了纳米金属的电子能级不连续性、尺寸效应、表面效应、宏观量子隧道效应、库仑阻塞与量子隧穿等几种纳米物理学效应;并在此基础上,进一步讨论了纳米电子技术、超晶格量子阱等重要应用.  相似文献   

9.
研究与两个普通金属电极相连并同时与三个量子点分子耦合的单个量子点中电导率性质和热电效应.结果发现当三个量子点分子的能级都相同时,单个量子点中电导率几乎不受二者之间耦合强度的影响,但赛贝克效应的品质因数(Figure of merit)却随着耦合强度的增大明显增大.如果量子点分子中的能级不同,单个量子点的电导率尖峰会因为量子干涉效应而发生分裂,并导致赛贝克效应的加强,其品质因数的值可以达到20左右,远远超过体材料的最佳值.  相似文献   

10.
本文报导了在低温、低压下,以三甲基镓(TMG)、三乙基铟(TEI)为Ⅲ族源材料,100%砷烷(AsH_3)、100%磷烷(PH_3)为V族源材料,用金属有机化合物气相沉积技术在(100)InP衬底上生长出In_(1-x)Ga_xAs/InP多量子阱结构材料.X光摇摆曲线观测到由于周期性多量子阱结构而产生的多级卫星峰,光致发光测量给出了不同阱宽下由量子阱尺寸效应而导致的PL谱.  相似文献   

11.
纳米氧化锌的制备方法与应用   总被引:2,自引:0,他引:2  
纳米ZnO(1~100nm)粒子尺寸小,比表面积大,具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应和介电限域效应等.在陶瓷、紫外屏蔽、纺织、橡胶、催化剂和光催化剂、传感器和吸波材料、荧光屏和电容器、图象记录材料等众多方面有着广泛的应用,本文对纳米ZnO的制备方法及应用进行了综合评述.  相似文献   

12.
多金属氧酸盐(POMs)是一类由过渡金属中心原子和氧原子共价连接形成的金属氧簇分子材料,具有多反应活性位点、多电子可逆氧化还原能力、催化特性和高离子扩散能力的特点,在能源电化学领域有着广泛的应用.本综述着重从分子结构设计层面讨论了POMs材料作为能源材料具有的优越性及其内在形成机理成因,为发展新型能源电化学储存、转化和利用体系提供更多的可能.  相似文献   

13.
<正>上海师范大学数理学院物理系科研工作依托"光电材料与器件实验室"开展,分为凝聚态物理、原子分子物理及光学等研究领域,在多电子原子物理、量子信息、多铁物理、宽禁带半导体物理等多个方向上具有明显的研究特色。一、铁电、压电、磁电等信息功能材料与器件中的关键科学问题研究我们围绕铁电、压电、磁电复合及光流明材料与器件中的关键科学问题开展研究,建立材料结构-性能-器件间的内在关系,研制了新型弛豫铁电单晶变压器、环境友好的高应变驱动器及高灵敏度的弱磁探测器件,并致力于探索增强相关效应间耦合的新途径,推进器件应用。  相似文献   

14.
众所周知,当不稳定量子系统被频繁测量时,量子Zeno效应就会发生,此效应在量子信息和量子通信中具有重要意义.然而,以前人们所研究的量子Zeno效应多数是针对二能级系统.可以验证三能级系统里同样存在量子Zeno效应,这将对不同量子系统量子态跃迁的阻止和量子Zeno效应的理解带来帮助,同时,在此基础上拓展到高维系统,也证明此效应的存在.  相似文献   

15.
项目主要研究在半导体和金属衬底上生长Pb薄膜时的量子尺寸效应,即纳米量级的厚度对薄膜生长规律的影响,进而探讨量子尺寸效应对驰豫结构的影响.这是当前凝聚态物理中两个重要方向———量子尺寸效应和薄膜驰豫结构的交叉点.到目前为止,还没有发现有人开展这样的工作.因此,该项目的研究必将会对凝聚态物理的发展产生一定的影响.  相似文献   

16.
研究了初始纠缠的量子比特在不同的环境下共生纠缠度和量子失协的动力学演化.在所研究的几种模型中,发现共生纠缠度强烈地依赖于初始环境,并在演化过程中发生纠缠死亡现象.共生纠缠度和量子失协在演化过程中均出现坍塌和复苏效应,但当量子比特间的相互作用为零时,坍塌和复苏效应消失.可无论在何种情况下,量子失协均不会减小到零,即仍能反映量子比特和系统间的量子关联,显示量子失协比量子纠缠具有更强的抗退相干能力.因此量子失协可作为获得有效量子信息的一种更有效的量子资源.  相似文献   

17.
纳米微粒具有小尺寸效应、表面效应、量子效应和宏观量子隧道效应等一系列普通材料所不具备的特性,因而引起科技工作者的广泛重视,成为材料科学研究的热点.制备纳米微粒的方法很多,但由于纳米微粒的小尺寸效应及表面效应,通常制备的无机纳米微粒极易团聚,而且无机纳米微粒的非油溶性使其在摩  相似文献   

18.
在量子信息理论中,量子Fisher信息(QFI)对于提高量子计量精度和效率极其重要.本文给出了多体非k积量子态基于Fisher信息的不对称性关联度,同时证明了其满足量子关联度的一些必要物理性质,包括非负性、酉不变性和凸性.  相似文献   

19.
电塑性效应是指在金属塑性变形过程中向其塑性变形区通电导致的金属变形抗力急剧下降、塑性显著提高的现象.虽然目前金属的电塑性加工技术已取得较好的实验研究成果,但对电塑性效应的作用机理的研究一直处在探索之中,其中比较关键的问题是电流在材料中产生电塑性效应的机理和电塑性效应中材料的各塑性相关量(变形抗力、延伸率)的理论计算方法...  相似文献   

20.
通过使用数态方法和准离散多标度方法,研究了准1维分子晶格模型中的量子孤波解,表明在这种模型中,不仅存在运动的量子孤波,也存在静态的量子孤波(即量子内禀局域模).利用所获得的量子孤波解,进一步研究了量子孤波的能级,得知量子孤波的能量是量子化的,这种非线性的量子化特性,可能导致在这种材料中观察到像量子化的热输运等奇妙的量子化现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号