首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Pt and its based alloy nanoparticles (NPs) have been reported to demonstrate novel enzyme-like activities. Varying composition is very important to realize the opti- mization of their functions through the tuning of electronic structure. In this paper, our effort is focused in this direction by tailoring the electronic structure of Pt NPs via alloying with copper. Using gold nanorod (Au NR) as core, a simple method to prepare PtCu alloy shell is developed (termed as Au@PtCu NR). The introduction of copper could result in endcap-preferred growth mode owing to the lattice mismatch between alloy shell and the Au core. The variation in the electronic structure changes the substrate affinity, and enhanced affinity was found for H202. Besides, the designed Au@PtCu nanostructures have realized spatial separation of catalytic and recognition sites. Binding of recognition antibodies had negligible effect on their catalytic activity. Based on their peroxidase- like activity, a highly sensitive detection of human immunoglobulin G (IgG) was demonstrated in a direct enzyme-linked immunosorbent assay (ELISA) mode. The detection limit can be as low as 90 pg/mL.  相似文献   

2.
Ba(Fe1/2Nb1/2)O3 thin films were grown on Pt/TiO2/SiO2/Si substrates with pulsed laser deposition (PLD) at temperatures ranging from 823 to 923 K with the varied ambient oxygen pressure. X-ray diffraction (XRD) data confirmed the single phase of polycrystalline Ba(Fe1/2Nb1/2)O3 thin films. The effects of substrate temperature and ambient oxygen pressure on the surface morphologies of the thin films were investigated by atomic force microscopy (AFM) and the growth dynamics of thin films was discussed. Larger grains and denser surface morphologies were observed with increasing substrate temperature. While finer grains were produced with increasing ambient oxygen pressure due to more frequent collisions between the ejected species and ambient oxygen molecules. The influence of the substrate temperature and ambient oxygen pressure on the dielectric properties was also discussed. Improved dielectric constant and decreased dielectric loss was observed for the thin film deposited at evaluated temperature.  相似文献   

3.
Ag@ZnS nanoparticles display enhanced photocatalytic efficiency and good photoelectric properties compared to their single-component counterparts in the process of forming a core-shell structure using an Ag cluster as the inner core of a ZnS outer shell.In this study,first-principles calculations were used to investigate the structural,electronic,and optical properties of Ag_n@(ZnS)_(42)(n=6-16)core-shell nanocomposites.The calculated results show significant even-odd oscillations in the structural stability,that is,Ag@ZnS nanostructures with an even number of Ag_n core atoms are relatively more stable than those with an odd number of core atoms.The secondorder differences in the total energies(Δ_2E)and the core-shell interaction energy E_(cs) indicate that a Ag_(12)@(ZnS)_(42)nanostructure is the most stable configuration.A significant red shift was found in Ag_n@(ZnS)_(42)nanoparticles in the absorption spectrum compared with a(ZnS)_(48) nanostructure,which is likely attributed to the strong electron interactions between the Ag core and the ZnS shell.  相似文献   

4.
The piezoelectric properties of [Ba(Zr_(0.2)Ti_(0.8))O_3]–0.5(Ba_(0.7)Ca_(0.3)TiO_3)(abbreviated as BZT-0.5BCT) thin films deposited on Pt/Ti/SiO_2/Si substrates are reported in the present investigation. The effect of the distances between the target and substrate(d) on the morphology and out-of-plane piezoelectric properties was investigated.The experimental results showed that the ferroelectric domains size was dependent on the distance between the substrate and target and the ferroelectric domain growth was constrained by the grains. The samples exhibited well-defined out-of-plane butterfly loops and hysteresis loops and the one with d of 6.5 cm possessed the optimal ferroelectric properties and it exhibited good in-plane piezoelectric properties.  相似文献   

5.
Multifunctional (poly(diallyldimethyl ammonium chloride)/ sodium poly(4-styrene sulfonate)) n ((PDDA/PSS) n ) thin films were fabricated by layer-by-layer assembled on the glass substrate. The monolayer silica nanoparticles were prepared on the (PDDA/PSS) n films. The SiO2-polyelectrolyte coatings exhibit antireflection properties with low refractive index (as low as 1.22). Interestingly, wavelengths of maximum transmittance could be well tailored by simply changing the particle size of SiO2. A maximum transmittance of 97.03% in the visible spectral range is achieved for the particle size of 100 nm SiO2 films. The coatings also show excellent mechanical stability and good adhesion to substrates. The easy availability of the raw materials and simplicity of the fabrication method for such films might make them be potentially useful for various applications.  相似文献   

6.
Cu2+-doped nanostructured TiO2-coated SiO2 (TiO2/SiO2) particles were prepared by the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized by the sol-gel method using TiOSO4 as a precursor. The experimental results showed that TiO2 nanopowders on the surface of SiO2 particles were well distributed and compact. The amount of TiO2 increased with the increase in coating layers. The shell structure appeared to be composed of anatase titania nanocrystals at 550°C. The 2-layer coated TiO2 particles on the surface showed a higher degradation rate compared with all the different-layer samples. The photocatalytic activity of Cu2+-doped TiO2/SiO2 was higher than that of undoped TiO2/SiO2. The optimum dopant content was about 0.10wt%.  相似文献   

7.
In this work, different effects of substrates on the morphologies of single-walled carbon nanotubes (SWNTs) are studied. SWNTs were produced by floating catalytic chemical vapor deposition using CH4 as carbon source gas and Ar as carrier gas. Then the SWNTs were deposited on lithography-patterned different substrates. The as-grown SWNTs at the boundaries between SiO2 and metal were characterized by scanning electron microscopy, atomic force spectroscopy and Raman spectroscopy. It is found that SWNTs deposited on low-conductivity substrates trend to have curved morphologies and some of them form rings, while SWNTs deposited on metal sub- strates remain straight and orientated. The mechanism of these effects was also discussed, which is closely related to the thermal conductivities and the principle of energy dissipation.  相似文献   

8.
Multiphase Fe-oxide thin films are fabricated on glass substrates by a facing-target sputtering tech- nique. X-ray diffraction and X-ray photoelectron spectroscopy reveal that Fe, Fe3BO4, γ -Fe2BO3B and FeO coexist in the films. High resolution transmission electron microscopy shows the well-defined colum- nar grain structure with the unoxidized Fe as the core and iron-oxide as the shell. The low-field positive and high-field negative magnetoresistances coexist in such a system at room temperature, which can be explained by considering a shell/core model. Nonlinear current-voltage curve and photovoltaic effect further confirm the tunneling-type conduction.  相似文献   

9.
A simple process to fabricate chain-like carbon nanotube (CNT) films by microwave plasma-enhanced chemical vapor deposition (MPCVD) was developed successfully. Prior to deposition, the Ti/Al2O3 substrates were ground with Fe-doped SiO2 powder. The nano-structure of the deposited films was analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The field electron emission characteristics of the chain-like carbon nanotube films were measured under the vacuum of 10-5 Pa. The low turn-on field of 0.80 V/μm and the emission current density of 8.5 mA/cm2 at the electric field of 3.0 V/μm are obtained. Based on the above results, chain-like carbon nanotube films probably have important applications in cold cathode materials and electrode materials.  相似文献   

10.
采用电化学沉积方法,选择聚乙二醇(PEG-400)和乙二胺(EDA)为添加剂,直接在ITO导电玻璃上制备了有序阵列的ZnO纳米棒,以及ZnO纳米棒上生长纳米棒微纳分级结构。采用化学浴沉积法均匀沉积Sb2S3纳米粒子,制备了Sb2S3/ZnO纳米棒壳核结构和Sb2S3/ZnO纳米棒上生长纳米棒分级壳核结构。利用扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外-可见吸收光谱(UV-vis)、瞬态光电流等分析手段对其形貌、结构和光电化学性能进行了表征和测试。研究表明,Sb2S3/ZnO纳米棒上生长纳米棒分级壳核结构阵列膜的光电流明显高于Sb2S3/ZnO纳米棒壳核结构阵列。  相似文献   

11.
Silicon oxide (SiOx) nanowires are generally grown on Si substrate under the catalysis of Au in N2 atmosphere at elevated temperatures. Because the price of Au metal is quite high, Fe metal is then used to replace a part of Au for catalyzing the growth of SiOx nanowires. The results show that the Fe film can be used as the diffusion barrier of Au. SiOx nanowires are grown on Au/Fe/Si substrate at 1030℃. Under the catalysis of Fe/Au, the efficiency for the growth of SiOx nanowires is promoted.  相似文献   

12.
采用Stber法和浸渍法制备了SiO2修饰的TiO2载体,并用浸渍法制备了钴基费-托合成催化剂,考察了其费-托合成催化性能.分别采用透射电子显微镜(TEM)、X-射线衍射(XRD)、低温氮气物理吸附-脱附、氢气程序升温还原(H2-TPR)等技术对载体和催化剂进行了表征,在固定床反应器上对催化剂的催化性能进行了评价.结果表明:SiO2的引入能减弱钴物种与TiO2之间的相互作用力,提高钴物种的还原性,使催化剂的催化性能显著提高.  相似文献   

13.
研究了一种新型pH响应纳米容器,采用“一锅法”合成了氨基化介孔二氧化硅(SiO2)棒状纳米粒子,并将苯并三唑(BTA)嵌入其中.通过装有纳米粒子的环氧树脂涂覆Q235碳钢基板来评估涂层的防腐蚀效果.电化学阻抗谱显示:与对照组相比,负载BTA的氨基化介孔SiO2的涂层具有明显的长效防腐蚀行为.  相似文献   

14.
We demonstrate an effective method to prepare a new condensed form of single-walled carbon nanotubes (crystal of SWNTs) using a series of diamond wire drawing dies. X-ray diffraction indicates that the SWNTs form a two-dimensional triangular lattice with a lattice constant of 19.62 ?. An intertube spacing of 3.39 ? of between adjacent SWNTs results in a sharp (002) reflection in the X-ray diffraction pattern. Meanwhile, we developed an approach based on the Coulomb explosion to separate SWNTs from their bundle. The separated SWNTs have a typical length of several microns and form a nanotree at one end of the original bundle. The separation is convenient and involves no surfactant. In studying devices comprising SWNTs, we find that a four-probe technique can be employed to study the filling of and flow within the inner channel of an individual SWNT. Current/voltage can drive water molecules to have directional flow along an SWNT, and the flowing of water inside an SWNT can induce a voltage gradient force (an induced electromotive force) along the SWNT. This energy conversion is realized by the mutual coupling of water dipoles and charge carriers present in SWNTs. The results suggest that SWNTs can be exploited as molecular channels for water and may find potential application in nanoscale energy conversion. Moreover, a surface-energy generator comprising SWNTs was demonstrated to harvest the surface energy of ethanol. The performance (the induction rate for V oc, the value of V oc and the output power) can be significantly enhanced by the Marangoni effect.  相似文献   

15.
InSb epilayers and InSb/Al0.20In0.80Sb quantum wells were grown on Ge(001)substrates and Ge-on-insulator(GeOI)-on-Si(001)substrates by molecular beam epitaxy.Growth on both on-axis and 4°-off-axis substrate orientations was studied.Anti-phase domains were formed when InSb films were grown on on-axis substrates,but suppressed significantly by the use of 4°-off-axis substrates.Such off-axis substrates also reduced the densities of micro-twin defects and threading dislocations.The defect reduction resulted in an increase in the room-temperature electron mobility from 37,000 to 59,000 cm2/Vs in 4.0-lm-thick InSb epilayers and from 10,000 to20,000 cm2/Vs in 25-nm-thick InSb quantum wells on Ge(001)and GeOI-on-Si(001)substrates.  相似文献   

16.
基于COMSOL软件对SiO2/IDT/AlN/Diamond多层结构中声表面波(surface acoustic wave,SAW)传输特性进行有限元(finite element method,FEM)分析.深入分析了多层结构中声波的色散特性,直观地展现了表面波向漏表面波的转化过程,研究了Al电极层厚度和SiO2缓冲层厚度对声表面波的影响.基于微加工工艺研制出一系列不同结构的声表面波谐振器,并对其频率响应特性进行了测试.测试结果与仿真结果基本一致,其中,1阶模式的声表面波表现出较好的应用潜力,可用于声表面波滤波器的研制.  相似文献   

17.
Currently, the functional and cost-effective flame-resistant textiles(FRTs) are on high demand. However, such FRTs based on general polymer fabrics are always expensive, readily decompose, and their temperatures quickly rise once exposed to thermal environments. Inspired by the large specific heat of water and high decomposition temperature of inorganic substances like SiO_2, this study establishes a simple casting strategy for preparing flameresistant gel/textiles(FR-GTs). The findings showed that active diffusion of aqueous AAM/SiO_2 pre-gel solution into the textile structure enabled the formation of a tough interfacial adhesion between the hydrogel and textiles.The interfacial toughness reached ~272 J/m~2 because the PAAM/SiO_2 nanocomposite hydrogel was filled into textile to form the semi-interpenetrating structure at the interface. The presence of chemical crosslinker(PEGDA)and physical crosslinker(SiO_2) limited the volume expansion of the hydrogel upon swelling. In addition, the PAAM/SiO_2 nanocomposite hydrogel layer prevented burning in high temperature environments(over 100℃),due to the heat dissipation of water during evaporation. This simple strategy provides a guidance towards the fabrication of hybrid hydrogel/textile composites for the applications like household fire resistant materials such as flame-resistant gloves.  相似文献   

18.
采用DEAE-Sephadex A-50及磷酸纤维素柱层析,用底物亲和洗脱法从萌发油菜(Brassica napus)种子中分离纯化了焦磷酸:果糖-6-磷酸1-磷酸转移酶(PFP).纯化倍数679.7倍,比活力为21.75 单位/毫克.蛋白,活力回收率22.9%.酶的最适pH值为7.5,Mg2+和M2+n对酶有激活作用.进行酶的初级动力学及稳态动力学研究,对果糖-6-磷酸(F6P)表现为典型的米氏规律,Km值为3.33 mmol/L;对焦磷酸(PPi)的活力变化,在PPi浓度小于1.0 mmol/L时具有部分米氏酶特点(Km=1.0 mmol/L),大于1.0 mmol/L时,PPi对酶有抑制作用.从两底物F6P和PPi的相互作用以及产物磷酸(Pi)与底物(F6P和PPi)的相互关系分析,初步推断油菜籽PFP的催化反应为双底物双产物的有序机制.  相似文献   

19.
SiO_2纳米颗粒稳定的泡沫体系驱油性能研究   总被引:1,自引:1,他引:0  
利用Warning Blender方法测定SiO2+SDS泡沫体系的泡沫性能,确定SiO2纳米颗粒的最佳使用浓度,并研究不同温度和矿化度对泡沫性能的影响。利用岩心驱替实验装置对比SDS和SiO2+SDS两种不同泡沫体系对岩心的封堵、调剖和驱油性能。利用微观可视化玻璃刻蚀模型,对比水驱、SDS泡沫体系以及SiO2+SDS泡沫体系对盲端油的驱替效果。室内实验结果表明,SiO2+SDS泡沫体系比单一SDS泡沫体系具有更强的稳定性,能够明显提高泡沫的封堵、调剖及驱油能力,增加盲端油的驱替效果。  相似文献   

20.
采用基于密度泛函理论的第一性原理计算方法,研究贵金属Pt掺杂的正极材料Li_2Pt_(0.125)Co_(0.875)SiO_4在锂离子脱嵌过程中晶格和电子结构的变化.计算结果表明,掺杂体系在脱嵌锂离子过程中,晶格参数和体积变化不大,充放电过程中循环稳定性保持较好,脱嵌电压也基本保持不变;Li-O键长增大,Li-O间相互作用减弱,锂离子迁移率增大.与纯相Li_2CoSiO_4相比,禁带中出现了掺杂原子Pt的d轨道电子,带隙变窄,从而提高了掺杂材料Li_2Pt_(0.125)Co_(0.875)SiO_4的电子导电性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号