首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
大气压射频辉光放电的不稳定性是限制其应用的主要原因,脉冲调制射频技术有助于提高放电稳定性.通过试验诊断放电电学特性,进一步研究了大气压脉冲调制射频辉光放电中脉冲调制参数对放电稳定性的影响.当固定调制脉冲频率而降低占空比时,特别是当射频放电段工作在起辉阶段时,α放电模式的电压和电流范围都增加;当射频频率提高时也有助于增加射频放电工作在α模式的电流范围.在试验中固定电压幅值,研究射频频率在5、10和15 MHz时α-γ放电模式转变随占空比的变化,验证了在低占空比下可以获得更稳定的α模式放电,另外在氦气中掺入1.5%氮气的情况下获得了脉冲调制射频辉光放电稳定工作在α模式.研究结果表明,通过调制脉冲参数可以控制大气压脉冲调制射频辉光放电的稳定性.  相似文献   

2.
大气压射频辉光放电冷等离子体由于摆脱了真空腔的限制,在生物医学、电子工业、国防等领域有非常广阔的应用前景。为了拓展等离子体形成气体的种类,降低该技术的应用成本,对大气压下纯氮射频放电进行了研究。实验中采用13.56MHz射频电源和裸露的平板电极在大气压下实现了纯氮射频辉光放电,并比较了纯氦、纯氮和氦-氮混合气体条件下的放电特性。实验结果表明,大气压条件下,纯氦辉光放电具有两个稳定的放电模式(α模式和γ模式),而纯氮目前则只能稳定地工作在γ放电模式。  相似文献   

3.
裸露金属电极大气压射频辉光放电研究进展   总被引:1,自引:0,他引:1  
射频大气压辉光放电等离子体在等离子体辅助刻蚀、薄膜沉积、消毒灭菌、空气净化、战地生化清洗等领域有着非常广阔的应用前景.目前,采用具有裸露金属电极结构的等离子体发生器实现大气压条件下氦气、氧气以及空气等廉价气体的稳定射频辉光放电是一项具有挑战性的研究工作.本文以采用诱导气体放电法和局部电场强化法产生纯氮、纯氧及空气的大气压射频辉光放电等离子体以及大气环境下气体流动对等离子体放电特性的影响为重点.综述了裸露金属电极结构的大气压射频辉光放电等离子体电特性实验研究的最新进展.  相似文献   

4.
研究了介质阻挡放电中放电特性随气体流量的变化.结果表明,击穿电压、放电的空间分布、电流波形等均随气体流量的改变而改变.击穿电压在静态气体中最高,随气体流量的增加呈现复杂行为;放电的空间分布在气体流量增加过程中由类四边形斑图转变为均匀的类辉光放电,最后出现局部的条纹斑图;而此过程中电流的脉冲数则先减小后增加.实验发现,存在一个适当的气体流量,使得击穿电压出现最低值,放电区呈现均匀的类辉光放电.  相似文献   

5.
大气压下辉光放电(APGD)在空气净化中有良好的应用前景。选取了大气压下普遍认为较易产生辉光放电的氮气作为反应气体,分别在不同气压(数百帕直至大气压)下,将其以一定的流速通过覆有介质材料的两平板电极之间,利用频率可变的高频电源,产生了介质阻挡辉光放电。通过对不同气压下的放电电压和电流及等离子体参数的比较,讨论了压强变化对于氮气环境下稳定辉光放电的影响。为进一步研究大气压下辉光放电的机理,实现大气压下空气环境中稳定的辉光放电提供了重要参考。  相似文献   

6.
采用在大气压脉冲调制射频(radio frequency,RF)辉光放电段之间同步引入介质阻挡放电(dielectric barrier discharge,DBD)等离子体射流的放电技术,通过电压和电流曲线以及放电的时空分布的时间演化过程,表征脉冲调制射频辉光放电和介质阻挡放电等离子体射流的放电特性及其动力学过程。试验研究发现,引入介质阻挡放电能有效辅助射频放电的起辉过程以及降低射频放电的击穿电压(从2.36kV降至1.53kV),这是由于介质阻挡放电等离子体射流在射频放电区域中注入了等离子体子弹,这一点可以由放电图像强度和放电空间结构的时间演变看出。  相似文献   

7.
本文采用一维自洽流体模型理论研究了高斯电压驱动下大气压氩气介质阻挡放电的放电特性.在特定的频率、振幅和气隙间隔条件下,得到了气隙电压和放电电流随时间的变化关系,以及放电气隙中电子、离子和电场的空间分布特征.模拟结果表明,高斯电压驱动下的大气压氩气介质阻挡放电是一个多电流脉冲放电,存在两种放电模式:汤森模式和辉光模式.在每半个放电周期内,放电经历一个在汤森模式与辉光模式之间的转变过程,气隙空间电荷和介质表面电荷是造成放电模式转变的主要因素.此外,下降沿残余电流峰的出现,是源于上升沿放电残留了大量的空间电荷.上述仿真结果为等离子体在材料表面处理、污染治理,以及生物医学等领域中电压激励源的设计提供了新的思路.  相似文献   

8.
最近的实验研究表明,在300 kHz–3 MHz的中频域,大气压氦气介质阻挡放电存在两种放电模式,即Ω模式和混合模式.为了深入研究中频域的放电模式与低频域(25–100 kHz)辉光放电模式及高频域(5–15 MHz)α模式之间的关系,本文借助于一维流体模型,数值模拟了中频域放电的这两种放电模式,并与实验结果进行了比较.数值研究表明,在中频域Ω模式下,传导电流及功率相对较小,带电粒子主要产生在放电间隙的中部,密度较低,电子加热方式主要为放电区域中部的欧姆加热.而中频域的混合模式,既体现了低频域的辉光放电模式的特点,比如阴极附近有很高的离子密度,电子产生及欧姆加热的区域均在鞘层内部,同时也体现了高频域的α模式的特点,比如在放电间隙中部有密度很高的等离子体区,这些计算结果均与实验观测定性一致.同时,进一步在固定电压的条件下研究了放电模式随频率的变化,指出中频域的混合模式实际是低频域的辉光放电模式与高频域的α模式之间的过渡阶段,本研究将有助于深化人们对大气压气体放电中放电模式之间转化的认识.  相似文献   

9.
大气压下介质阻挡放电的发射光谱   总被引:1,自引:0,他引:1  
为了研究大气压下气体介质阻挡放电的微观机理,利用Maya2000-pro光谱仪采集了气体介质阻挡放电的发射光谱,分析了介质阻挡放电型低温等离子体反应器的放电参数、气体体积流量和气体组分对发射光谱强度的作用规律,并依据气体放电发射光谱研究了放电空间的活性物质和氮气氩气混合气的放电机理.结果表明:大气压下氮气放电会产生第2正带系的跃迁辐射光谱;氮气放电的特征谱线强度随激励电压峰峰值与放电频率的升高而增大;氮气放电的激发态物质种类不随放电参数的改变而改变;在放电功率不变的情况下,特征谱线强度随气体体积流量变化不明显;氮气氩气混合气放电时,观察到明显的潘宁效应,且气体放电的击穿电压峰峰值随混合气中氩气体积分数的升高而下降.  相似文献   

10.
为了进一步明确大气压多脉冲辉光放电的形成机理,采用扩展的一维等离子体流体模型数值研究了大气压多脉冲介质阻挡均匀放电的放电特性.该模型增加了电子能量守恒方程,考虑了电子温度对电子输运系数的影响.结果表明大气压氦气多脉冲放电中的每个电流脉冲都处于汤森放电模式,上一次放电为下一次放电提供了种子电子,导致了后面的击穿电压依次降低,放电电流脉冲依次减小.随着驱动频率的增加,电流脉冲个数减少,但是脉冲电流大小增加.随着驱动电压幅值的增加,不仅电流脉冲个数增加,脉冲大小也增加,模拟结果与实验结果定量吻合.  相似文献   

11.
辉光放电产生的低温等离子体具有广泛的应用前景,日益成为研究热点。本文提出了一种采用脉冲叠加直流的方式来激励辉光放电的实验装置。选取氩气作为反应气体,本实验在低气压下进行,利用参数可调的高频脉冲电源和直流电源进行激励。研究了不同激励方式下击穿电压和电流的变化规律。实验发现:直流辉光放电击穿电压最低,约为380 V,但是在放电过程中放电管发热比较严重;脉冲辉光放电所需击穿电压为450~600 V,但其存在反复击穿;而脉冲叠加直流激励辉光放电则降低了脉冲击穿电压,最低约为400 V,且改善了放电管发热严重的问题。  相似文献   

12.
采用双水电极介质阻挡放电装置,在大气压下研究了氩气和空气混合气体中气体成分对等离子体斑图(包括四边形斑图和六边形斑图)的影响.四边形斑图和六边形斑图的电压范围随着空气含量的增加而逐渐增大.实验测量了击穿电压随空气含量变化的关系.结果发现:击穿电压随着空气含量的增加而增大,但不成简单的线性关系.在氩气放电中,击穿电压值随着放电间隙的增大而增大.  相似文献   

13.
通过电压-电流波形和发光图片研究了大气压氦气介质阻挡放电中的模式转换现象.实验结果表明了通过改变外加电压的大小,可以引起放电模式的变化.随着电压的逐渐升高,放电依次经历汤生放电、局域辉光放电和辉光放电.局域辉光作为从汤生放电向辉光放电的一个过渡阶段。  相似文献   

14.
通过建立一个自洽的一维等离子体流体模型,数值模拟了大气压下氩气介质阻挡均匀放电的放电过程,得到了各种等离子体参量在放电过程中的时空分布,研究了驱动频率对放电特性以及放电模式的影响.计算结果表明:随着驱动频率的增加,放电电流密度以及空间电荷密度不断增加,气隙电压在放电前后的变化量也随之增大,均匀放电模式从典型的大气压汤森放电(APTD)模式逐渐过渡到大气压辉光放电(APGD)模式.驱动电压的增长率以及空间剩余电荷是造成放电模式转变的主要因素.  相似文献   

15.
在大气压脉冲调制射频辉光放电的两个射频放电段之间引入脉冲放电,研究脉冲放电对射频放电段的起辉动力学过程和稳态放电特性的影响。通过试验测量时间分辨的放电图像,获得了脉冲放电和射频放电段的放电时空演变过程,发现脉冲放电电流峰值从0.4 A增加到0.6 A时,射频放电段的起辉时间从0.8μs降低到0.5μs,而放电空间分布也经历从双峰形到钟形再到双峰形的动力学演变过程。射频放电段达到稳态放电后的电流和电压特性也说明了脉冲放电有助于提高射频放电段稳态放电强度。  相似文献   

16.
利用空气作为工作气体,采用直流电压激励针-环等离子体喷枪,在大气环境下产生了可触摸的低温等离子体羽.利用电学和光学测量,结果表明等离子体羽存在两种放电模式:脉冲模式和连续模式.对于脉冲模式,研究发现放电频率随气体流量或电源输出电压的增加而增加.对于连续模式,伏安特性表明其为反常辉光放电.利用光纤测温仪测量了两种放电模式下等离子体羽的气体温度,发现气体温度随着电源输出电压增加或气体流量减小而升高.相比于连续模式,脉冲模式温度更低,可用手触摸,因此在生物医学领域有更大的应用价值.利用发射光谱,通过拟合的方法计算了两种放电模式的分子振动温度,发现它与气体温度随参数的变化趋势相同.  相似文献   

17.
常压辉光放电的建立及其特性实验研究   总被引:7,自引:0,他引:7  
常压辉光放电(APGD)是新近发展起来的一种等离子体源,与低气压辉光放电相比更具有工业应用前景,本文详细介绍我们实验室在大气压条件下建立的均匀稳定、介质垒同辉光放电等离子体发生装置,该放电发生采用频率为10kHz和20kHz高压电源、平板电极,民彬覆盖绝缘层,间隙2-3mm,可在多种气体环境下稳定运行,放电电流波形和电压一电荷李萨如图形的测量充分表明它确实是常压下的均匀辉光放电。  相似文献   

18.
氮气大气压介质阻挡放电发射光谱诊断   总被引:8,自引:0,他引:8  
用发射光谱法对氮气大气压介质阻挡放电等离子体进行了诊断,测出了N2(C^3∏g-B^B∏g)的337.1nm谱线强度随气体流量、电极间距、放电电压以及放电频率的变化规律.发现光强在气体流量为300mL/min或电极间距为1.5mm时有一个最大值;光强随放电电压及频率的增加而增强.但放电频率或电压增加到某一值时,光强的增强产生了突变,这时放电从丝状介质阻挡放电转变成准辉光介质阻挡放电;测得了放电电压电流波形、电压-电荷李萨如图形、时间分辨的发射光谱,发现丝状介质阻挡放电的微放电通道是随机分布独立存在的,相互不受影响;而准辉光介质阻挡放电的微放电通道之间产生叠加,并相互影响。  相似文献   

19.
射频放电段的起辉特性决定了常压脉冲调制射频辉光放电的放电特性和稳定性,通过建立常压氦气脉冲调制射频辉光放电的一维自洽流体数值模型,研究了射频放电段的放电时空演化过程,着重讨论了调制脉冲占空比对射频放电段的起辉过程和稳定放电特性的影响。当射频放电电压保持在680 V不变且占空比小于18.40%条件下,电子密度的空间分布表现为主等离子体均匀分布,射频放电段工作在起辉阶段;随着占空比的增长,射频放电段中的鞘层结构得到增强,在占空比大于18.4 0%条件下,电子密度的空间分布表现为电极两侧增强的双峰分布的情况,放电达到稳定状态。电子平均能量和电场强度的空间分布随占空比的变化规律,也揭示了射频放电段从起辉阶段到稳定放电状态的转变过程。研究结果为常压脉冲调制射频辉光放电的放电机制和稳定性控制提供了理论依据。  相似文献   

20.
本文分析了用来确定SF_6-CO_2混合气体中预放电参数(游离和吸附系统)和击穿特性的方法.由三种方法所获得的有效游离系数和E/P极限值吻合.文中给出了一种分析混合气体预放电电流变化的方法,用此方法获得了准确的α/P和η/P值.在所研究的条件下,除了低的Pd值情况外,由实验所得的击穿电压和计算值相符.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号