首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the IDH1 and IDH2 genes encoding isocitrate dehydrogenases are frequently found in human glioblastomas and cytogenetically normal acute myeloid leukaemias (AML). These alterations are gain-of-function mutations in that they drive the synthesis of the ‘oncometabolite’ R-2-hydroxyglutarate (2HG). It remains unclear how IDH1 and IDH2 mutations modify myeloid cell development and promote leukaemogenesis. Here we report the characterization of conditional knock-in (KI) mice in which the most common IDH1 mutation, IDH1(R132H), is inserted into the endogenous murine Idh1 locus and is expressed in all haematopoietic cells (Vav-KI mice) or specifically in cells of the myeloid lineage (LysM-KI mice). These mutants show increased numbers of early haematopoietic progenitors and develop splenomegaly and anaemia with extramedullary haematopoiesis, suggesting a dysfunctional bone marrow niche. Furthermore, LysM-KI cells have hypermethylated histones and changes to DNA methylation similar to those observed in human IDH1- or IDH2-mutant AML. To our knowledge, our study is the first to describe the generation and characterization of conditional IDH1(R132H)-KI mice, and also the first report to demonstrate the induction of a leukaemic DNA methylation signature in a mouse model. Our report thus sheds light on the mechanistic links between IDH1 mutation and human AML.  相似文献   

2.
Recurrent mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 have been identified in gliomas, acute myeloid leukaemias (AML) and chondrosarcomas, and share a novel enzymatic property of producing 2-hydroxyglutarate (2HG) from α-ketoglutarate. Here we report that 2HG-producing IDH mutants can prevent the histone demethylation that is required for lineage-specific progenitor cells to differentiate into terminally differentiated cells. In tumour samples from glioma patients, IDH mutations were associated with a distinct gene expression profile enriched for genes expressed in neural progenitor cells, and this was associated with increased histone methylation. To test whether the ability of IDH mutants to promote histone methylation contributes to a block in cell differentiation in non-transformed cells, we tested the effect of neomorphic IDH mutants on adipocyte differentiation in vitro. Introduction of either mutant IDH or cell-permeable 2HG was associated with repression of the inducible expression of lineage-specific differentiation genes and a block to differentiation. This correlated with a significant increase in repressive histone methylation marks without observable changes in promoter DNA methylation. Gliomas were found to have elevated levels of similar histone repressive marks. Stable transfection of a 2HG-producing mutant IDH into immortalized astrocytes resulted in progressive accumulation of histone methylation. Of the marks examined, increased H3K9 methylation reproducibly preceded a rise in DNA methylation as cells were passaged in culture. Furthermore, we found that the 2HG-inhibitable H3K9 demethylase KDM4C was induced during adipocyte differentiation, and that RNA-interference suppression of KDM4C was sufficient to block differentiation. Together these data demonstrate that 2HG can inhibit histone demethylation and that inhibition of histone demethylation can be sufficient to block the differentiation of non-transformed cells.  相似文献   

3.
4.
植物激活蛋白对水稻秧苗生长及相关酶活性的影响   总被引:12,自引:1,他引:11  
研究了不同浓度激活蛋白对水稻秧苗生长以及对琥珀酸脱氢酶(SDH)、淀粉酶和丙酮酸激酶(PK)的影响。结果表明,用1(μg·mL-1)、2(μg·mL-1)、6(μg·mL-1)植物激活蛋白处理水稻种子,能促进水稻秧苗的生长,尤其对根长的促进作用更明显。2(μg·mL-1)植物激活蛋白处理水稻种子能够提高水稻秧苗的琥珀酸脱氢酶(SDH)、总淀粉酶、丙酮酸激酶(PK)活性,5d后达最高值,分别比对照提高了67.1%、63.2%、378%。  相似文献   

5.
Mitochondrial metabolism provides precursors to build macromolecules in growing cancer cells. In normally functioning tumour cell mitochondria, oxidative metabolism of glucose- and glutamine-derived carbon produces citrate and acetyl-coenzyme A for lipid synthesis, which is required for tumorigenesis. Yet some tumours harbour mutations in the citric acid cycle (CAC) or electron transport chain (ETC) that disable normal oxidative mitochondrial function, and it is unknown how cells from such tumours generate precursors for macromolecular synthesis. Here we show that tumour cells with defective mitochondria use glutamine-dependent reductive carboxylation rather than oxidative metabolism as the major pathway of citrate formation. This pathway uses mitochondrial and cytosolic isoforms of NADP(+)/NADPH-dependent isocitrate dehydrogenase, and subsequent metabolism of glutamine-derived citrate provides both the acetyl-coenzyme A for lipid synthesis and the four-carbon intermediates needed to produce the remaining CAC metabolites and related macromolecular precursors. This reductive, glutamine-dependent pathway is the dominant mode of metabolism in rapidly growing malignant cells containing mutations in complex I or complex III of the ETC, in patient-derived renal carcinoma cells with mutations in fumarate hydratase, and in cells with normal mitochondria subjected to acute pharmacological ETC inhibition. Our findings reveal the novel induction of a versatile glutamine-dependent pathway that reverses many of the reactions of the canonical CAC, supports tumour cell growth, and explains how cells generate pools of CAC intermediates in the face of impaired mitochondrial metabolism.  相似文献   

6.
低氧胁迫对日本沼虾呼吸代谢和抗氧化能力的影响   总被引:4,自引:0,他引:4  
为阐明低氧胁迫对日本沼虾呼吸代谢和氧化代谢的影响,并初步探讨其作用机制及日本沼虾的抗氧化响应机制,将日本沼虾暴露于低氧((2±0.2)mg/L,8 h)而后恢复常氧水平((7±0.2)mg/L,2.5 h).结果显示:与对照组(保持常氧水平)相比,随着低氧暴露时间延长,日本沼虾肝胰腺和肌肉组织细胞色素氧化酶(CCO)和琥珀酸脱氢酶(SDH)活力显著下降(p0.05),延胡索酸还原酶(FRD)和乳酸脱氢酶(LDH)活力显著上升(p0.05);总抗氧化能力(T-AOC)和过氧化氢酶(CAT)活力显著上升(p0.05),超氧化物歧化酶(SOD)活力显著下降(p0.05).恢复常氧阶段,CCO,SDH,FRD,LDH,CAT和SOD活力逐渐恢复到正常水平,T-AOC在恢复常氧1 h时显著降低(p0.05),而后恢复到正常水平.低氧胁迫使得有氧代谢减弱,无氧代谢增强,以维持机体能量需求;T-AOC和CAT活力增加而SOD活力降低,是日本沼虾适应低氧环境所采取的一种抗氧化策略.  相似文献   

7.
Lancaster CR  Kröger A  Auer M  Michel H 《Nature》1999,402(6760):377-385
Fumarate reductase couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalysed by the related complex II of the respiratory chain (succinate dehydrogenase). Here we describe the crystal structure at 2.2 A resolution of the three protein subunits containing fumarate reductase from the anaerobic bacterium Wolinella succinogenes. Subunit A contains the site of fumarate reduction and a covalently bound flavin adenine dinucleotide prosthetic group. Subunit B contains three iron-sulphur centres. The menaquinol-oxidizing subunit C consists of five membrane-spanning, primarily helical segments and binds two haem b molecules. On the basis of the structure, we propose a pathway of electron transfer from the dihaem cytochrome b to the site of fumarate reduction and a mechanism of fumarate reduction. The relative orientations of the soluble and membrane-embedded subunits of succinate:quinone oxidoreductases appear to be unique.  相似文献   

8.
探讨锁阳多糖(Cynomrium songaricum Rupr polysaccharide,CSRP)对运动训练大鼠骨骼肌、心、肝、肾等组织细胞及线粒体的保护作用,为CSRP在运动医学中的应用提供实验依据.采用分光光度法测定安静对照组、运动训练组和运动+CSRP组大鼠血清琥珀酸脱氢酶(succinatedehydrogenase,SDH)、肌酸激酶(creatine kinase,CK)、乳酸脱氢酶酶(lactate dehydrogenase,LDH)、丙氨酸转氨酶(alanine transaminase,ALT)、天冬氨酸转氨酶(aspartate aminotransferase,AST)活性和尿液总蛋白(total protein,TP)、尿液白蛋白(albumin,Alb)和尿液β2-微球蛋白(β2-microglobulin,β2-MC)含量等相关生物化学指标;跑台法测定运动训练组和运动+CSRP组大鼠运动至力竭的时间.结果表明:运动+CSRP组血清SDH、CK、LDH活性显著低于运动对照组(P<0.05),ALT、AST活性显著低于运动对照组(P<0.05),TP、Alb和β2-MC含量显著低于运动对照组(P<0.05);运动+锁阳多糖组大鼠运动至力竭的时间与运动对照组比较明显延长(P<0.05).表明CSRP可以降低血清SDH、CK、LDH、ALT、AST活性和TP、Alb和β2-MC含量,保护运动训练大鼠骨骼肌、心、肝、肾等不同组织细胞和线粒体的结构,维持其正常功能,可延长大鼠跑台运动至力竭时间,具有抗疲劳作用.  相似文献   

9.
本实验通过对大鼠间歇性低氧训练(IHT)结束后不同时段的心肌指数和组织酶等指标进行测试,评定一定周期的IHT后,机体所形成的有效的、积极的适应性变化可持续的时间段。从实验可得出:(1)IHT对大鼠有氧代谢能力促进作用能保持约3-6d;(2)心肌和骨骼肌中的琥珀酸脱氢酶(SDH)、细胞色素氧化酶(CCO)在IHT后,活性显著提高,表明IHT可通过促进氧的利用能力来提高机体有氧代谢能力;(3)经IHT后,心肌指数亦有显著性上升,表明IHT可从氧的运输方面促进机体有氧代谢能力。  相似文献   

10.
TDI对小鼠睾丸组织能量代谢的影响   总被引:6,自引:2,他引:4  
研究甲苯二异氰酸酯(TDI)对雄性小鼠生殖细胞能量代谢的影响,探讨甲苯二异氰酸酯对雄性小鼠生殖损伤的机制.用分光光度法检测睾丸组织匀浆中琥珀酸脱氢酶(SDH)、乳酸脱氢酶(LDH)和ATPase的活性.TDI染毒两周后SDH、LDH及ATPase的活性均受到了抑制.在本实验染毒时间和染毒剂量范围内,TDI不仅干扰睾丸组织的有氧代谢及无氧代谢的供能过程,还干扰细胞对能量的利用.提示能量代谢障碍可能是TDI对雄性生殖细胞毒作用的机理之一.  相似文献   

11.
A Sucheta  B A Ackrell  B Cochran  F A Armstrong 《Nature》1992,356(6367):361-362
In mitochondria, electrons derived from the oxidation of succinate by the tricarboxylic acid cycle enzyme succinate-ubiquinone oxido-reductase are transferred directly to the quinone pool. Here we provide evidence that the soluble form of this enzyme (succinate dehydrogenase) behaves as a diode that essentially allows electron flow in one direction only. The gating effect is observed when electrons are exchanged rapidly and directly between fully active succinate dehydrogenase and a graphite electrode. Turnover is therefore measured under conditions of continuously variable electrochemical potential. The otherwise rapid and efficient reduction of fumarate (the reverse reaction) is severely retarded as the driving force (overpotential) is increased. Such behaviour can arise if a rate-limiting chemical step like substrate binding or product release depends on the oxidation state of a redox group on the enzyme. The observation provides, for a biological electron-transport system, a simple demonstration of directionality that is enforced by kinetics as opposed to that which is assumed from thermodynamics.  相似文献   

12.
Fumarate hydratase (FH) is an enzyme of the tricarboxylic acid cycle (TCA cycle) that catalyses the hydration of fumarate into malate. Germline mutations of FH are responsible for hereditary leiomyomatosis and renal-cell cancer (HLRCC). It has previously been demonstrated that the absence of FH leads to the accumulation of fumarate, which activates hypoxia-inducible factors (HIFs) at normal oxygen tensions. However, so far no mechanism that explains the ability of cells to survive without a functional TCA cycle has been provided. Here we use newly characterized genetically modified kidney mouse cells in which Fh1 has been deleted, and apply a newly developed computer model of the metabolism of these cells to predict and experimentally validate a linear metabolic pathway beginning with glutamine uptake and ending with bilirubin excretion from Fh1-deficient cells. This pathway, which involves the biosynthesis and degradation of haem, enables Fh1-deficient cells to use the accumulated TCA cycle metabolites and permits partial mitochondrial NADH production. We predicted and confirmed that targeting this pathway would render Fh1-deficient cells non-viable, while sparing wild-type Fh1-containing cells. This work goes beyond identifying a metabolic pathway that is induced in Fh1-deficient cells to demonstrate that inhibition of haem oxygenation is synthetically lethal when combined with Fh1 deficiency, providing a new potential target for treating HLRCC patients.  相似文献   

13.
目的:观察全氟辛酸对小鼠肝脏相关酶系的影响。方法:将小鼠随机分为4组,分别为空白组、1/16LD50、1/8LD50和1/4LD50组,染毒14 d后采用试剂盒法测定肝组织匀浆中琥珀酸脱氢酶(SDH)、血清中乳酸脱氢酶(LDH)和血清中单胺氧化酶(MAO)含量的变化。结果:染毒组肝组织中SDH活性显著低于空白组(P0.01),随染毒剂量增加呈递减趋势;染毒组血清中LDH和MAO活性显著高于空白组(P0.01)。随染毒剂量增加呈递增趋势。结论:全氟辛酸通过损伤肝细胞线粒体,破坏能量代谢,进而损伤肝组织,可致肝坏死。  相似文献   

14.
Metabonomics analysis of the urine of rats with Qi deficiency and blood stasis syndrome has been performed by comparison with those of normal rats based on NMR techniques. The relative contents of formate,creatinine,2-oxoglutarate(2-OG) ,citrate,taurine,trimethylamine-N-oxide(TMAO) ,succinate and hippurate in the urine of the rats with Qi deficiency and blood stasis syndrome have been changed. These results have provided evidence for understanding the mechanism and the therapy of Qi defi-ciency and blood stasis syndrome.  相似文献   

15.
Johnson L  Mercer K  Greenbaum D  Bronson RT  Crowley D  Tuveson DA  Jacks T 《Nature》2001,410(6832):1111-1116
About 30% of human tumours carry ras gene mutations. Of the three genes in this family (composed of K-ras, N-ras and H-ras), K-ras is the most frequently mutated member in human tumours, including adenocarcinomas of the pancreas ( approximately 70-90% incidence), colon ( approximately 50%) and lung ( approximately 25-50%). To construct mouse tumour models involving K-ras, we used a new gene targeting procedure to create mouse strains carrying oncogenic alleles of K-ras that can be activated only on a spontaneous recombination event in the whole animal. Here we show that mice carrying these mutations were highly predisposed to a range of tumour types, predominantly early onset lung cancer. This model was further characterized by examining the effects of germline mutations in the tumour suppressor gene p53, which is known to be mutated along with K-ras in human tumours. This approach has several advantages over traditional transgenic strategies, including that it more closely recapitulates spontaneous oncogene activation as seen in human cancers.  相似文献   

16.
Mutant alpha subunits of Gi2 inhibit cyclic AMP accumulation   总被引:16,自引:0,他引:16  
One or more of three Gi proteins, Gi1-3, mediates hormonal inhibition of adenylyl cyclase. Whether this inhibition is mediated by the alpha or by the beta gamma subunits of Gi proteins is unclear. Mutations inhibiting the intrinsic GTPase activity of another G protein, the stimulatory regulator of adenylyl cyclase (Gs), constitutively activate it by replacing either of two conserved amino acids in its alpha subunit (alpha s). These mutations create the gsp oncogene which is found in human pituitary and thyroid tumours. In a second group of human endocrine tumours, somatic mutations in the alpha subunit of Gi2 replace a residue cognate to one of those affected by gsp mutations. This implies that the mutations convert the alpha i2 gene into a dominantly acting oncogene, called gip2, and that the mutant alpha i2 subunits are constitutively active. We have therefore assessed cyclic AMP accumulation in cultured cells which stably or transiently express exogenous wild-type alpha i2 complementary DNA or either of two mutant alpha i2 cDNAs. The results show that putatively oncogenic mutations in alpha i2 constitutively activate the protein's ability to inhibit cAMP accumulation.  相似文献   

17.
研究了葡萄糖浓度波动对于体外培养的人肝实质L02细胞的影响以及可能的机制.利用人肝实质细胞株L02进行传代培养.实验共分为4组:正常组(N)、持续高糖组(HG)、波动组(GF)和渗透压对照组(OP).各组细胞培养72 h后,测定培养液中谷丙转氨酶(ALT)、谷草转氨酶(AST)和乳酸脱氢酶(LDH)活力,肝细胞内糖原含量,谷胱甘肽(GSH)、丙二醛(MDA)、超氧化酶歧化酶(SOD)、Na~+K~+-ATP酶和Ca~(2+)Mg~(2+)-ATP酶的活力,胞内游离钙离子([Ca~(2+)]_i)浓度以及细胞膜的流动性.高糖组和波动组细胞培养液中ALT,AST和LDH活力上升,细胞内GSH,SOD,Na~+K~+ATP酶和Ca~(2+)Mg~(2+)-ATP酶活性均下降,MDA和糖原含量上升,细胞膜流动性下降;高糖组和波动组与正常组比较均差异显著(p0.001),波动组较高糖组也有显著差异(p0.01).葡萄糖浓度波动能够导致细胞膜通透性的改变和细胞内酶的严重泄漏,同时对肝细胞有明显的氧化损伤和毒性作用,而且比单纯的高糖对肝细胞的损害更为明显和严重.  相似文献   

18.
Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.  相似文献   

19.
20.
The protein-kinase family is the most frequently mutated gene family found in human cancer and faulty kinase enzymes are being investigated as promising targets for the design of antitumour therapies. We have sequenced the gene encoding the transmembrane protein tyrosine kinase ERBB2 (also known as HER2 or Neu) from 120 primary lung tumours and identified 4% that have mutations within the kinase domain; in the adenocarcinoma subtype of lung cancer, 10% of cases had mutations. ERBB2 inhibitors, which have so far proved to be ineffective in treating lung cancer, should now be clinically re-evaluated in the specific subset of patients with lung cancer whose tumours carry ERBB2 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号