首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 562 毫秒
1.
采用Rayleigh-Ritz法分析了含单个椭圆形分层损伤的复合材料对称层板在均匀温度场中的分层热屈曲问题.考虑了材料依赖于温度变化的弹性及热性质,给出了相应于不同椭圆主轴偏角β、不同椭圆长短半轴a/b,以及对称角铺设层板在不同铺设角θ值时的线性和非线性热弹性脱层屈曲的临界温度.  相似文献   

2.
含椭圆形分层损伤层合板的非线性的热屈曲   总被引:2,自引:0,他引:2  
采用Rayleigh-Ritz法分析了含单个椭圆形分层损伤的复合材料对称层板在均匀温度场中的分层热屈曲问题,考虑了材料依赖于温度变化的性及热性质,给出了相应于不同椭圆主轴偏角β、不同椭圆长短半轴a/b,以及对称角铺设层板在不同铺设角θ值时的线性和非线性热弹性脱层屈曲的临界温度。  相似文献   

3.
采用Wintcomb薄膜分层屈曲模型,根据Rayleigh-Ritz法建立了考虑温度效应时复合材料层合板分层屈曲的稳定特征方程,计算阳出了均匀温度场中对称铺设层合板椭圆形分层屈曲的临界压缩载荷及屈曲临界温升。  相似文献   

4.
采用以准三维模型为基础的非线性有限元,研究了具有对称穿透分层损伤的复合材料层合板在均匀面内压缩载荷作用下的后屈曲变形,并结合虚裂纹闭合技术(VCCT),计算了分层前缘的层间能量释放率各型分量。数值分析表明,含对称中心分层损伤斜交铺层复合材料的层合板在压缩载荷作用下,其分层扩展能量释放率与分层子板压缩方向上的刚度有关。  相似文献   

5.
复合材料层合板表面椭圆形分层非线性屈曲分析   总被引:2,自引:0,他引:2  
基于修正型Hahn-Tsai非线性本构模型,利用Rayleigh-Ritz法,研究了复合材料层合板表面椭圆形分层非线性屈曲性态.采用阻尼因子法有效地克服了非线性迭代过程中屈曲应变的振荡现象.数值结果表明:某些层合板椭圆形分层非线性临界应变与线性临界应变有明显差别.  相似文献   

6.
为研究双轴受压反对称角铺设复合材料层压板的后屈曲和模态跳迁性能,由渐近修正几何非线性理论推导其双耦合四阶控制偏微分方程(即协调方程和动态控制方程);通过采用广义Galerkin方法将层合板的耦合非线性控制偏微分方程转换为系列非线性常微分方程组;然后,采用解的延拓方法软件对层合板的后屈曲行为进行分析,确定面内直边边界下层合板出现屈曲模态跃迁的路径和临界载荷.通过对四层简支复合层合板算例计算表明:该方法数值结果与有限元分析(FEA)相比,在主后屈曲区域有很好的吻合性;而当解接近第2分岔点时,有限元分析失去收敛性,而所提分析方法仍具有深入探索二次分岔后屈曲区域和准确捕捉模态跃迁现象的能力.  相似文献   

7.
以康铜、镍不同厚度的薄膜,陶瓷Al2O3基组成微电子组件模型,在热载作用下,通过试验观察到薄膜在界面处的分层和屈曲失效。测量了分层和屈曲高度随载荷变化规律、过屈曲初始裂纹扩展。用屈曲理论和分界面能量释放率等理论进行了分析。  相似文献   

8.
采用试验、工程算法及有限元方法研究了复合材料加筋板剪切性能。首先进行了剪切试验,试验结果表明:加筋板失效模式为筋条脱粘、蒙皮局部破损,加筋板的破坏载荷是屈曲载荷的1.14倍。然后,对工程算法进行修正,提出了一种计算屈曲载荷的快速分析方法;工程算法得到的屈曲载荷相对误差为3.53%。最后,建立了有限元模型,模型考虑了试验件与夹具的连接;通过有限元方法得到的屈曲载荷、屈曲模态及破坏模式与试验结果一致;与试验相比,屈曲载荷、破坏载荷的相对误差分别为2.21%、14.4%。  相似文献   

9.
对称层板二维的分层屈曲研究   总被引:8,自引:1,他引:8  
本文在分层屈曲的位移表达式中,考虑了反映拉剪耦合与弯扭耦合效应的高阶项.文中还讨论了层板两端在均匀位移拉伸作用下发生分层屈曲的机理,并分析了分层屈曲应变与母层板和子层板的参数之间的关系.  相似文献   

10.
采用基于全量Lagrangian理论的非线性有限元方法研究了冲击载荷作用下含层间短纤维的复合材料层板的分层扩展问题.通过Newmark方法求解动力学方程,以能量释放率作为裂纹扩展准则.用节点双编号和节点分离技术模拟裂纹扩展,用双向弹簧单元模拟层间短纤维作用.通过改变弹簧刚度修正短纤维桥联力,在裂纹表面和冲击接触区设置接触单元,并以罚函数法计算接触力,分析了层间短纤维的桥联作用对裂尖应力场和能量释放率的影响.结果表明:层间短纤维的桥联作用有效地降低了层间应力集中程度和裂尖能量释放率,增韧效果明显.  相似文献   

11.
溃曲变形是顺层边坡中的一种重要破坏形式,其形成机制较为复杂,隐蔽性较高.为研究顺层溃曲滑坡的发育规律及岩层屈曲影响因子,运用数理统计的分析方法,总结50个溃曲边坡实例,提取出坡长因子、坡高因子、岩层倾角因子、单层厚度因子以及岩性因子,对影响因子进行特征曲线、层面倾角贡献率分析.结果表明:①溃曲滑坡多发育于软硬互层及含软弱夹层的顺层边坡中,滑坡规模较大,巨型滑坡居多,占溃曲滑坡数量的51.6%,发生屈曲变形的主要为硬质岩层,砂岩占比最多,为45.2%,滑动面为柔性岩层,泥岩占比最多,为48.3%;②边坡屈曲变形的岩层倾角多为20°~50°,此倾角区间溃曲滑坡数量占74%,单层厚度为薄层的占62.5%;③岩层倾角在20°~30°、40°~60°时,发生溃曲变形的贡献率程度最高,占溃曲滑坡坡高的81.3%,占溃曲滑坡坡长的82.6%,占溃曲滑坡体积的75.7%,占溃曲滑坡数量的68%,是溃曲滑坡发育的主要倾角区间.所得分析结论可为溃曲滑坡的形成判据及危险度评价提供一定参考依据.  相似文献   

12.
采用有限条程序CUFSM计算不同截面尺寸的冷弯卷边槽形截面轴压构件弹性屈曲应力,通过回归分析得到部分加劲板件的屈曲稳定系数建议计算公式,同时采用澳洲规范(AS/NZS4600:2005)、北美规范(AISIS100-2007)、欧洲规范(EN1993—1—3:2006)、美国规范(ANSI/AISICFSSPEC-1996)、中国规范(GB50018—2002)中的有效宽度法以及建议的加劲板件屈曲系数对收集到的国内外共100根卷边槽形截面轴压构件极限承载力进行计算分析.结果表明:我国现行规范《冷弯薄壁型铜结构技术规范》(GB50018—2002)和欧洲规范(EN1993—1-3:2006)计算结果偏于保守,而澳洲规范(AS/NZS4600--2005)、北美规范(AISIS100-2。07)和美国规范(ANSI/AISICFSSPEC--1996)计算结果偏不安全.利用建议公式再根据我国现行规范《冷弯薄壁型钢结构技术规范》(GB50018—2002)计算所得结果与实验值吻合较好,可供设计和修订规范参考.  相似文献   

13.
用有限元方法求解了3D复合材料中有纤维搭桥的矩形脱层屈曲问题.搭桥纤维和基体分别用分布于脱层单元节点上的只拉不压和只压不拉的线性弹簧单元来模拟,并把有纤维搭桥脱层屈曲的特征值问题转化成考虑初始缺陷的结构几何非线性强度问题,用增量非线性结构分析的有限元方法求解.结果表明,引进纤维搭桥后,脱层屈曲模态上存在与基体周期性的接触点(区),屈曲临界载荷随着纤维搭桥刚度的增加而增加.最后,通过数学公式给出了脱层屈曲的特征长度与纤维搭桥的关系式.  相似文献   

14.
液黏离合器摩擦副热屈曲特性仿真分析   总被引:1,自引:1,他引:0  
为了研究液黏离合器摩擦副软启动过程中的热屈曲变形,建立了对偶钢片轴对称热传导模型和热屈曲模型,获得了温度场的分布规律,通过有限元法求解了对偶钢片的屈曲变形模态及临界屈曲温度,并分析了约束条件对热屈曲特性的影响。结果表明:软启动结束时对偶钢片温度及径向温差均达到最大值,温度沿径向方向先上升后下降,厚度方向不存在温度梯度;第一阶屈曲模态具有最低的临界屈曲温度,为锥形变形,轴向位移沿半径方向呈线性分布;约束条件能够改变钢片的屈曲模态以及降低临界屈曲温度,为避免液黏离合器摩擦副发生热变形和热失效提供一定的理论依据。  相似文献   

15.
建立一端固定一端自由受压杆件的三雏模型;运用独立、连续、映射的方法建立以结构重量为目标,以屈曲临界力为约束的拓扑优化模型;借助泰勒展式、过滤函数及瑞利商将模型作近似处理,避免了灵敏度的计算;并利用序列二次规划对一端固定一端自由的受压杆件模型进行求解,并且验证了受压杆件折算为两端铰支压杆的长度系数;为工程师在受压杆件设计中提供了最优结构.  相似文献   

16.
利用铁木辛柯能量法研究了具有初始缺陷的薄板受端面载荷作用下的变形行为.针对典型边界状况,选定合适的位形函数,导出了总势能表达式及其一阶和二阶变分.并以方板作为特例讨论了屈曲行为及二次屈曲问题.同时还指明了外力势能对变形行为的影响.  相似文献   

17.
针对引信中支筒抗力零件受冲击的问题,对圆柱壳受轴向冲击作用时的塑性动态屈曲特性进行了研究。并将理论分析结果与试验结果进行了比较。  相似文献   

18.
文章对方形钢管混凝土轴压柱局部屈曲性能进行了分析,推导了钢管壁发生局部屈曲时的屈曲系数、屈曲半波长及临界屈曲应力表达式,并与局部屈曲试验研究成果进行了比较,提出了更为合理的计算公式,为后续的进一步研究打下基础。  相似文献   

19.
该文从薄板稳定的能量法出发,推导出不同情况下斜坡弯曲失稳的判据。应用此判据表明,它既方便又更符合实际情况。近来发现由于岩层滑移-弯曲而产生的滑坡,本文就某些实例的形成机制进行了讨论,并提出蠕变滑移-弯曲的破坏机制的概念。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号