首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
桥面混凝土裂缝处防水层抗拉分析   总被引:1,自引:0,他引:1  
为充分了解桥面防水层的层间拉应力的变化规律,研究桥面混凝土裂缝处防水层的抗拉性能,利用有限元法对混凝土桥面铺装结构建模,分析了在行车荷载作用下,桥面各铺装层参数对桥面防水层层间法向拉应力的影响规律,并针对桥面水泥混凝土调平层裂缝处的防水层,建立了防水层张力计算模型.计算结果表明:沥青混凝土面层与水泥混凝土调平层的模或量和厚度、防水层厚度等参数的变化对层间法向拉应力影响很小;防水层模量是影响层间法向拉应力的主要因素,当防水层模量为10~50MPa时,对层间法向拉应力的影响最大,防水层模量为50~300MPa时影响较大,防水层模量为300~1500MPa时影响基本稳定.  相似文献   

2.
胶粉改性沥青桥面防水层具有抗高低温性能好、抗施工损伤特性好、具有与沥青混凝土铺装层和水泥混凝土桥面板黏结性能好、环保等优点,利用黏弹性力学原理对设有胶粉改性沥青防水层的铺装结构进行受力特性分析,研究了防水层厚度、桥面铺装层厚度对桥面铺装结构抗剪性能的影响,并与室内试验结果进行了对比,结果符合良好.分析结果表明:随防水层厚度增加,最大剪应力值τmax会增大;随沥青混凝土铺装层厚度增加,τmax呈现先减小后增大趋势.沥青混凝土面层的厚度为13 cm时产生的τmax值最小.  相似文献   

3.
混凝土桥面复合式铺装层受力分析和设计   总被引:2,自引:0,他引:2  
选取典型的T梁和箱梁桥型,将桥梁体、水泥混凝土铺装层、防水层、沥青混凝土铺装层视作一个整体,研究了复合式桥面铺装在承受汽超-20偏载作用下的结构响应.采用有限元方法进行三维空间实体建模,分析了铺装层受力最不利位置、铺装层拉应力、层间剪应力和层间法向拉应力.结果表明:桥梁体、水泥混凝土铺装层、防水层和沥青混凝土铺装层相互作用,在桥梁结构特殊部位产生铺装层最大拉应力,在轮载作用域产生最大层间应力;铺装层厚度对荷载应力大小有重要影响.提出了复合式铺装的设计指标,建议沥青混凝土铺装层和水泥混凝土铺装层厚度的设计采用复合式结构.  相似文献   

4.
本文采用ansys15.0对混凝土桥沥青铺装层进行了力学分析,对工程实际中的桥梁进行了适当的简化处理,建立的合适的有限元几何模型,主要研究上下沥青铺装层厚度及材料的弹性模量对温缩应力影响。  相似文献   

5.
摘要应用有限元法,对设防水层的水泥混凝土桥桥面沥青铺装结构进行剪应力计算,分析了防水层的厚度、模量、泊松比、沥青混凝土铺装层厚度和模量等参数对结构层剪应力的影响,认为层间最大剪应力主要取决于面层厚度和防水层模量,相同的防水层模量通过增加面层厚度是降低层间剪应力的最有效手段。在计算与分析的基础上,给出了常用参数范围内的剪应力计算诺模图。  相似文献   

6.
应用有限元软件ABAQUS,建立桥面铺装动力分析三维有限元模型,分析上下层铺装厚度、层间接触状态、水平力、铺装材料等因素对桥面铺装层受力控制指标的影响规律。结果表明:面层最大拉应力峰值随铺装上层厚度的增大而不断增大;与完全连续的层间接触状态相比,不完全连续状态下的铺装层力学控制指标均有不同幅度的增长,其中铺装表面拉应力峰值增幅最大;水平力对铺装表面拉应力和表面弯沉影响很小,而铺装层间剪应力随水平力的增大而不断增大;不同的铺装材料对铺装层力学控制指标具有较大的影响,提高铺装材料的强度可有效降低铺装层的力学响应量。  相似文献   

7.
通过有限元计算方法,在考虑粘结状况影响的情况下,计算有粘结缺陷时的层间应力状况,并分析有防水层时的受力规律,并得出铺装层厚度和弹性模量对防水层受力的影响情况。  相似文献   

8.
目的研究沥青混凝土桥面铺装对正交异性钢桥面板疲劳性能的影响,提出合理的铺装层厚度与弹性模量.方法建立正交异性钢桥的有限元模型,并与试验结果进行对比,验证正交异性钢桥有限元模型及其边界条件的有效性;选取易产生疲劳裂缝4个典型位置的构造细节进行有限元分析,从而找到桥面铺装层厚度、弹性模量等铺装层参数对正交异性钢桥面板疲劳细节处应力幅的影响趋势;验算疲劳细节应力幅值是否小于《公路钢结构桥梁设计规范》(JTG D64—2015)中疲劳S-N曲线中相应疲劳细节的200万次循环疲劳强度35 MPa.结果当铺装层厚度自60 mm增加到100 mm时,疲劳细节的等效应力幅值逐渐下降,且呈线性递减趋势;铺装层厚度为70 mm时,其弹性模量应不小于5 000 MPa为宜;当其模量自1 000 MPa增加到10 000 MPa时,不同疲劳细节的等效应力幅值呈非线性下降趋势.当其模量增加到8 000 MPa时,疲劳细节的等效疲劳应力幅趋于稳定;铺装层材料的模量为3 000 MPa时,其铺装层厚度应不小于80 mm为宜.结论 4种疲劳细节中,与钢桥面板接触的疲劳细节其疲劳性能受铺装层厚度、铺装层模量影响比其他疲劳细节大.桥面铺装层能有效地降低疲劳细节的等效疲劳应力幅,改善正交异性钢桥面板的疲劳性能.  相似文献   

9.
目的研究考虑铺装层间接触的桥面铺装及空心板梁在双轴移动荷载下的受力状态,以解决混凝土桥梁在桥面铺装设计时对铺装层之间的关系状态考虑不全面的问题.方法采用ABAQUS有限元软件建立含有沥青铺装层、粘结层、混凝土调平层、空心板及铰缝的数值模型,利用子程序模拟行车移动载荷,设置库仑接触摩擦建立层间接触,考虑不同荷位、层间摩擦系数对空心板梁及桥面铺装的影响.结果铺装层间最大水平接触力出现在梁端区域;铰缝与空心板的挠度相差10%,应力在轮载附近处变化较大;沥青铺装与粘结层间接触摩擦应力为0.209 3 MPa,大于混凝土铺装与粘结层间接触摩擦应力0.156 MPa;连续模型与接触模型的应力最大差值达4.5倍.结论不同结构层间界面薄弱,易发生剪切破坏;为防止板与铰缝间发生剪切破坏,可加强轮载附近处板与铰缝的连接;采用不同措施处理各层之间的粘结,可使经济效益最大化;将铺装层视为连续体考虑不周,层间接触假定更符合实际情况.  相似文献   

10.
结合甘肃省永登至古浪高速公路水泥混凝土桥面防水层施工实践,采用喷砂抛丸施工方法,有效去除桥面水泥混凝土表面的浮浆,对水泥混凝土桥面铺装表面缺陷进行彻底处理,改善混凝土表面粗糙度,增强桥面水泥混凝土与沥青混凝土的层间黏接力,提高桥面铺装层的整体性和耐久性。  相似文献   

11.
为研究高韧性混凝土组合桥面铺装层间应力简化计算方法,采用ANSYS有限元分析,探讨钢-STC-SMA结构厚度、环境温度、桥面纵坡等对层间应力的影响规律,建立轻型组合桥面铺装层间应力估算模型,提出层间最大剪应力、最大法向拉应力简化计算公式. 研究结果表明: SMA厚度、STC厚度、环境温度、桥面纵坡等对层间应力有不同程度的影响;在最不利荷载组合下,不计桥面纵坡时,层间最大剪应力变化范围为0.38~0.55 MPa(常温)、0.35~0.55 MPa(高温);层间最大法向拉应力变化范围为0.18~0.23 MPa;层间应力随着桥面纵坡的增加而线性增加,纵坡从0%增加到8%,层间最大剪应力升幅为9.4%(常温)、12.0%(高温),层间最大拉应力升幅为12.0%(常温)、12.5%(高温);通过纵坡坡度修正,建立高韧性混凝土组合桥面铺装层间应力通用计算公式,并与实桥有限元计算结果对比,误差在9%以内,说明本文提出的计算方法可用于估算不同纵坡下高韧性混凝土组合桥面铺装层间应力.  相似文献   

12.
通过对常见防水层材料和层间结合料进行直剪试验,采用弹性层状体系理论,对水泥混凝土桥桥面层间剪应力进行了力学计算与分析,并结合防水层、平整度、施工工艺和车辙指标的要求,提出了桥面沥青铺装厚度的计算方法,在此研究基础上,推荐了桥面铺装结构与厚度范围.  相似文献   

13.
为解决混凝土桥桥面铺装结构设计时对调平层与沥青铺装层层间真实接触状态考虑不足的问题,采用理论推导和室内试验相结合的方法,应用层间接触系数来评价不同层间处治措施下的层间接触状态,同时采用ANSYS软件对不同接触条件下的力学响应进行分析.结果表明,植石措施下的层间接触系数值最大,为0.607,这与其表面构造深度大有关;部分连续层间接触状态下沥青铺装结构的受力状态明显较完全连续接触条件恶化,以拉毛措施下的沥青铺装层剪应力为例,XY向、YZ向剪应力最大值分别为0.412 MPa和0.421 MPa,较完全连续条件下的0.195 MPa和0.222 MPa分别增加了111%和91%,说明以完全连续层间接触条件进行铺装结构设计是不合理的;四种混凝土表面处治措施下,各铺装层所受最大应力变化不大,但与完全连续状态相比,沥青铺装层的受力状况明显恶化,说明在铺筑实体工程时要尽可能增强调平层与沥青铺装层的层间接触状态.  相似文献   

14.
为研究桥面细部构造和桥面铺装对正交异性钢桥面板力学性能的影响,确定合理的构造,以梯形及矩形截面形状的纵向加劲肋与多种缺口形式的横隔板相组合形成正交异性钢桥面板结构体系,并铺设不同厚度、不同弹性模量的沥青混凝土铺装层,建立相应的有限元实体模型进行加载,分析纵向加劲肋截面形状、横隔板缺口形式及铺装层弹性模量和厚度对正交异性钢桥面板力学性能的影响规律。结果表明:加劲肋上口间距越小,改善桥面板受力性能越明显,其中加劲肋B(梯形加劲肋侧板与底板采用圆弧连接)受力性能较好,且用料少;缺口Ⅰ、缺口Ⅲ的应力集中情况好于缺口Ⅱ,因此应合理选用缺口Ⅰ和缺口Ⅲ,但缺口Ⅲ需要优化;顶板与纵向加劲肋连接处应力高,为力学性能敏感区域;铺装层弹性模量增加,钢桥面板最大主应力减小,铺装层厚度增加,钢桥面板和沥青表面最大主应力均减小,因此铺装层弹性模量与厚度要综合设计,以使钢桥面板受力性能最优。  相似文献   

15.
针对混凝土桥桥面铺装层间结构病害多发问题,将理论计算与室内试验相结合,找出层间结构最不利剪切位置,根据最不利剪切位置节点受到的层间剪应力与压应力所呈现的特殊线性关系,给出铺装结构层间剪切评价指标,同时进行层间剪切状态关键影响因素敏感性分析,并与存在垂直压力条件的组合结构层间抗剪强度回归方程建立联系,进行桥面铺装层间结构剪切行为分析。研究结果表明:双矩形均布荷载作用下,层间结构最不利剪切位置是荷载作用区域沿行车方向的前端边界线;层间结构剪切状态会随荷载水平力系数的增加而迅速恶化,对于层间结构一,水平力系数0.5时的拟合方程斜率为0.693,较水平力系数为0时的拟合方程斜率0.342增加了103%,增幅十分显著;不考虑材料本身剪切破坏情况下,增加层间结构上部沥青层厚度可在一定程度上改善其剪切状态;接地压强大于1.2MPa的车辆紧急刹车时,采用乳化沥青黏层的层间结构一有可能发生一次性剪切破坏;采用抛丸界面的层间结构二不会出现由于车辆超载而导致的一次性剪切破坏,而对于采用原状界面的层间结构二,接地压强为0.85MPa时车辆紧急刹车即可使其处于临界破坏状态。对于重载交通下的桥面铺装,建议层间结构采用SBS改性沥青黏层和抛丸调平层表面处治措施。  相似文献   

16.
针对桥面铺装混凝土调平层和沥青铺装层层间接触状态复杂的问题,运用ANSYS有限元分析软件,建立了更符合实际的后轴双轮组轮胎模型,以目前我国常用的空心板梁桥为研究对象,分析了摩擦、完全黏结、绑定和完全粗糙等多种接触状态下铺装结构的应力响应.计算结果表明:车辆荷载并不是均布荷载,其压力峰值随胎压和轴重的变化而变化;混凝土调平层与沥青铺装层间的接触状态对铺装结构受力影响显著;4种接触状态中,黏结接触状态下的铺装结构受力最优,当层间黏结不足时,层间接触更接近假设的"绑定"接触状态.  相似文献   

17.
以某下沉式道路为研究对象,运用有限元法分析了路面热平衡过程中道路结构的应力分布情况,以探讨道路结构可能发生破损的原因和位置,结构抗浮底板层的弹性模量和厚度,以及结构抗浮底板层中铺装钢筋配筋率及其铺装位置对其应力的影响.结果表明,在下沉式道路结构中,极有可能在连续配筋混凝土层的底部最先产生张开型(I型)裂缝,且结构抗浮底板层的厚度和铺装钢筋层位对I型裂缝的影响较大.  相似文献   

18.
为了研究混凝土桥混凝土铺装层病害机理,用有限元法分析不同桥型在车辆荷载作用下水泥铺装层的不同受力特征;着重分析了铺装层拉应力、接触层间剪应力及层间法向分离拉应力。针对典型箱梁,分析了铺装层和桥面板间完全连续、完全光滑和滑动摩擦3种不同接触类型;连续铺装和划缝、带裂缝配筋工作状态;分析应力对铺装厚度的敏感性。结果表明,水泥铺装应以铺装层上表面抗拉强度、层间抗剪强度和法向分离强度作为设计指标,不同桥梁采用不同的铺装厚度。  相似文献   

19.
为了研究中小跨径预应力混凝土梁桥桥面铺装层对桥梁结构荷载试验校验系数的影响,以114座预应力混凝土连续箱梁及空心板桥作样本,分别计算在不考虑桥面铺装、考虑一半铺装和考虑全部铺装下桥梁结构的横向分布系数的变化,基于不同的保证率给出了3种情况下桥梁结构应变和挠度校验系数的统计规律及统计参数,最后分析了铺装层对桥梁结构校验系数的影响程度,并提出了中小跨径预应力混凝土梁桥考虑铺装不同作用程度的常见校验系数范围.分析结果表明:混凝土铺装厚度对预应力混凝土梁桥横向分布影响很小,而对其结构校验系数的影响程度较大.对于预应力混凝土空心板桥,与不考虑混凝土铺装相比,考虑全部混凝土铺装时的应变校验系数提高约24%,挠度校验系数提高约45%;对于预应力混凝土箱梁桥,与不考虑混凝土铺装相比,考虑全部混凝土铺装时的应变校验系数提高约11%,挠度校验系数提高约21%.其结论可为同类梁桥荷载试验承载能力评定作参考.  相似文献   

20.
目的探索沥青路面应力吸收层的防裂效果,提高重载及低温环境下沥青路面的使用寿命.方法运用ABAQUS软件建立含裂缝沥青路面三维有限元模型,通过分析对比沥青路面面层层底σ_(11)、σ_(22)、σ_(33)、τ各应力值及路表弯沉值,确定橡胶沥青应力吸收层合理厚度和弹性模量;在低温状态下,分析橡胶沥青应力吸收层的厚度和弹性模量分别对沥青路面面层表及面层底的拉应力及剪应力的影响,从而确定橡胶沥青应力吸收层在低温和重载环境下的防裂效果.结果在重载交通作用下橡胶沥青应力吸收层推荐的厚度为3 cm,弹性模量为800 MPa;在低温状态下,橡胶沥青应力吸收层的厚度对面层底的拉应力影响很大,而弹性模量对面层底部拉应力的影响很小.结论橡胶沥青应力吸收层对沥青路面裂缝的产生起到很好的抑制作用,能消散面层与基层之间力的作用从而延缓反射裂缝的发生,延长路面的使用寿命.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号