首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
为了兼顾活性复合射流对目标的侵爆联合毁伤效应,提出了一种新型活性复合药型罩聚能装药结构.采用正交设计方法,基于Autodyn-2D数值模拟平台对新型活性复合罩聚能装药结构进行了优化设计,获得了复合罩总壁厚、内罩口径比、内罩壁厚比、复合罩锥角及炸高对新结构聚能装药作用混凝土的侵彻深度、开孔直径、活性材料流入量与平均流入深度的影响规律,优化出了一组新型活性复合罩结构,并开展了新结构聚能装药作用混凝土靶的静爆实验,实验结果与仿真计算的侵深基本吻合.此外,实验结果还表明:在这种新结构活性复合射流侵爆联合作用下,可使混凝土表面形成较大崩落区,且形成的入孔孔径与仿真结果相比明显较大,这些现象表明活性材料发生了剧烈爆燃效应,可造成二次扩孔效应.  相似文献   

2.
药型罩对聚能射流速度影响的数值模拟分析   总被引:1,自引:0,他引:1  
为了研究药型罩对聚能射流破甲威力的影响,利用LS-DYNA动力有限元计算程序对聚能射流形成过程进行了数值模拟.在此基础上着重应用数值模拟方法分析了药型罩锥角、药型罩壁厚、药型罩形状对聚能射流速度的影响,得到了射流速度与药型罩的关系,射流速度随药型罩锥角的减小而增加,随药型罩壁厚的增加而降低,喇叭形罩比圆锥罩速度大.从而为聚能射流药型罩的设计提供参考.  相似文献   

3.
钨合金药型罩材料的大破孔聚能战斗部研究   总被引:3,自引:0,他引:3  
为得到大尺寸破甲孔径,提出了采用钨合金作为药型罩材料的大破孔聚能战斗部设计方案. 以聚能装药射流成形及侵彻理论为基础,采用实验与数值模拟相结合的方法,研究钨合金药型罩结构参数、材料组分及加工工艺对靶板的大孔径破甲的影响. 结果表明,采用粉末型钨合金为药型罩材料的聚能战斗部,在保证具有相同或略大的破甲深度的同时明显增大了破甲孔径.  相似文献   

4.
新型环形聚能射流形成机理研究   总被引:1,自引:0,他引:1  
为了解决环形聚能射流稳定性差、速度低等缺点,提出了一种新型环形聚能装药结构,基于正交优化方法,采用Autodyn软件对新型环形聚能装药结构进行了优化设计,给出了药型罩壁厚、药型罩曲率半径、聚焦装置锥角、喷孔直径及壳体厚度对射流头部轴向及径向速度的影响,优化出了径向偏转速度低的新型环形聚能射流,并进行了实验验证,实验结果与数值模拟结果基本一致.数值模拟及实验结果均表明,文中提出的新型环形聚能装药结构能够形成环形破孔,在钢靶上破孔直径107 mm,深度28 mm.   相似文献   

5.
三种聚能装药结构形成射流的对比分析   总被引:1,自引:1,他引:0  
为了对比不同聚能装药结构形成射流的特性,应用改进的PER理论模型,结合Autodyn有限元软件,理论和数值模拟研究了单锥罩、带隔板单锥罩和带隔板偏心亚半球罩三种装药结构的射流成型过程。计算了药型罩绝对压垮速度、绝对偏转角、压垮角、射流速度、射流质量等成型参数,获得了三种装药结构形成射流的形状。结果表明,带隔板偏心亚半球罩形成射流效果最佳,其质量堆积点位置降低了约20%,射流质量占药型罩质量提高了12.2%。数值模拟与理论计算结果吻合较好,研究结果为聚能装药战斗部的设计提供参考。  相似文献   

6.
本文采用数值模拟方法,对药型罩结构进行优化设计,建立了金属射流形成过程计算模型,采用自适应网格技术,计算分析了不同锥角和壁厚对聚能装药射流速度的影响. 设计了射流穿靶实验,采用靶网测速法测量了金属射流的速度,通过观察金属射流形成的杵体及侵彻靶板的孔径,获得了金属射流的直径. 结果表明设计的聚能装药射流在炸高40 mm处的平均速度为7800 m/s,射流直径为7.55 mm左右.  相似文献   

7.
药型罩参数对聚能装药水下作用效应的影响   总被引:2,自引:1,他引:1  
数值模拟和实验研究聚能装药水下作用行为,初步获得了药型罩形状、厚度、曲率及半径中心等参数对聚能装药水下作用的影响特性.AUTODYN-2D数值模拟与实验结果均表明,罩形是影响聚能装药水下作用行为的决定性因素,偏心亚半球形罩装药水下作用可有效形成空腔随进效应,而且穿过相同水层厚度后对验证靶的破甲能力明显优于锥形罩和双曲罩聚能装药.罩厚对杆式侵彻体初速有显著影响,罩曲率中心及半径则主要影响杆式侵彻体的初始形状及速度.  相似文献   

8.
 采用实验方法确定目标毁伤研究中材料等效存在一定困难。为此,采用基于非线性动力学软件数值模拟仿真方法,研究聚能装药作用下材料的等效。首先利用AUTODYN非线性动力学软件,采用欧拉-拉格朗日的流固耦合方法,进行大量数值计算,通过比较相同计算时刻的破甲深度、所耗费时间以及射流头部速度等参数,确定对应于药型罩为某锥角值的最佳炸高。在此条件下,利用射流极限破甲剩余速度方法确定了两种钢材的等效系数,某新型装甲钢与45#钢的等效系数约为1.75。研究方法和研究结果对于某些弹药毁伤效能鉴定实验过程中等效靶的设置具有一定参考价值。  相似文献   

9.
双锥药型罩成形的影响因素复杂,其壁厚、上锥角、下锥角以及上锥高度占比4个参数对形成射流的特性、侵彻性能产生重要影响。基于正交设计方法分析以上因素对射流特性及侵彻能力的影响。选取双锥药型罩的以上4个参数为正交优化的4个因素,将射流头部速度、速度梯度以及有效长度作为优化时主要的评价指标,对双锥药型罩进行结构方案优化。通过分析双锥药型罩数值仿真优化结果,得到药型罩上锥角为25°、下锥角为55°、壁厚为3.5 mm、上锥占比60%时,其形成的射流具有较好的破甲效果。  相似文献   

10.
本文利用LS-DYNA有限元分析软件对半球形药型罩成形形成的杆式聚能侵彻体进行破甲数值模拟,在水介质中侵彻过程和破甲毁伤效果。论文通过水中爆炸和聚能装药理论分析、进行数值模拟和试验验证相结合。  相似文献   

11.
为使串联战斗部中的聚能装药结构在短靶距内形成形状和侵彻能力较好的自锻破片(EFP),通过数值模拟的方法,研究了多级串联战斗部中自锻破片的形成及其对混凝土地下掩体的侵彻过程. 通过设计前级聚能装药结构,既保证了随进弹的装药量,又为随进弹的侵彻开辟了适当口径和深度的孔道. 总结了在计算过程中的几个关键步骤和处理方法;研究了药型罩的壁厚、锥角和聚能装药的起爆方式对EFP的影响. 研究结果表明:在二维轴对称的计算模型中,环形起爆方式有利于形成质量较好的EFP;聚能装药的壁厚越大,EFP的直径越大,侵彻深度越小;聚能装药的锥角越大,EFP的直径越大,速度越小.  相似文献   

12.
多模毁伤元形成与侵彻效应的数值模拟   总被引:9,自引:2,他引:7  
研究改变起爆方式使Octol炸药和球缺紫铜药型罩的柱锥型战斗部形成爆炸成型弹丸和杆式侵彻体两种毁伤元,采用AUTODYN-2D软件对点起爆和环形起爆方式下毁伤元形成与侵彻装甲钢靶进行数值模拟,分析起爆位置对毁伤元成形和侵彻能力的影响. 数值模拟结果表明,相同战斗部结构在5Dk(Dk为装药直径)炸高下,理想环形起爆半径条件下形成的杆式侵彻体对装甲钢的侵彻深度约为爆炸成型弹丸侵彻深度的2倍.  相似文献   

13.
钛合金药型罩聚能装药射流成型与侵彻实验研究   总被引:2,自引:1,他引:1  
为研究轻质合金药型罩的侵彻性能,采用X光照相技术对两种大锥角钛合金药型罩的射流成型及其对钢靶的侵彻行为进行了实验研究. 结果表明,140°锥角药型罩产生的射流近似为EFP,其对钢靶的侵彻半径大,但侵深较浅. 120°锥角药型罩在中心起爆时,形成杆式射流;而环形起爆时,则形成典型射流,其侵彻深度比中心起爆有较大提高. 此外与铜质药型罩相比,其侵彻孔径得到明显提高. 因此,采用轻质合金和环形起爆,可以在保证大锥角药型罩较高能量利用率的同时增大开孔孔径和侵彻深度.   相似文献   

14.
基于AUTODYN-2D非线性动力学分析平台,对小口径聚能装药引爆典型爆炸反应装甲的力学和化学作用行为进行了数值模拟,得到了装药口径、药型罩锥角、药型罩壁厚和炸高对射流头部速度和起爆参量的影响规律.通过对射流作用爆炸反应装甲的引爆现象和夹层炸药中各点处压力变化进行特性分析,提出了综合判定爆炸反应装甲夹层炸药是否起爆的有效方法.研究结果为反坦克串联聚能战斗部前级装药设计提供参考.  相似文献   

15.
杆式射流装药水下作用行为研究   总被引:8,自引:3,他引:5  
采用数值模拟与实验相结合的方法研究杆式射流装药水下作用行为. AUTODYN-2D程序数值模拟结果表明,采用偏心亚半球形罩装药可形成杆式射流,并能在水下产生空腔随进效应.装药长径比对杆式射流速度有一定影响,但对水下侵彻能力影响不大.炸高对杆式射流入水形状、速度梯度及水下侵彻能力有显著影响.对于口径54mm偏心亚半球形铜罩装药,数值模拟与实验结果均表明,水下作用有利炸高约为4倍装药口径.  相似文献   

16.
为解决传统高聚物基活性罩聚能装药侵彻深度严重不足这一瓶颈性问题,提出了一种活性-铜复合罩聚能装药结构,并采用数值模拟和实验相结合的方法,研究了活性-铜罩射流成形及侵彻钢靶增强行为.仿真表明,内层铜罩主要形成高速前驱射流首先侵彻钢靶,活性材料外罩大部分形成杵体且可以随进侵孔内部.实验结果表明,与传统单一活性射流相比,活性-铜射流对钢靶造成的侵深更大,且侵彻性能与进入侵孔内的活性材料质量显著受炸高影响.实验与仿真对比表明,活性材料的爆燃反应会导致侵彻过程提前终止,可能的机理是其化学反应在侵孔内会形成超压,造成铜射流严重失稳,致使剩余射流无法再继续侵彻.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号