首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以大广线开封黄河二桥主桥--7塔8跨预应力混凝土矮塔斜拉桥为研究对象,借助MIDAS/Civil有限元程序建立了该桥梁空间有限元计算模型,采用子空间迭代法计算了桥梁的动力特性.计算结果表明,该桥梁的低阶振动主要表现为桥面系的整体竖向振动和桥塔的横向振动,桥梁结构的自振周期较大,振型较为密集,由于该桥梁宽跨比较大,桥面整体竖向振动出现比较早,桥梁的第1阶扭转频率与第1阶竖弯频率之比为4.01,表明该桥梁具有良好的气动稳定性.  相似文献   

2.
为明确在计算连续梁桥主梁不同荷载效应(位移、正负弯矩和剪力)的冲击系数时,采用哪一阶频率计算更加合理,以分联长度为r×30 m(跨数r=3,4,5,6)的预应力混凝土连续梁桥为研究对象,运用理论分析与有限元数值模拟相结合的手段,研究了位移冲击系数、正负弯矩冲击系数和剪力冲击系数与前3阶频率的对应关系。首先运用动力学和曲率模态理论得到了位移冲击系数、正负弯矩冲击系数和剪力冲击系数与各阶振型的关系式;接着运用梁格法分别建立r×30 m预应力混凝土连续梁桥的MIDAS Civil有限元数值模型,然后利用傅里叶级数分别对有限元分析中得到的前3阶竖弯振型进行拟合,最后将拟合得到的振型函数代入不同效应的冲击系数与各阶振型的关系式,从而分别得到前3阶竖弯模态对不同效应冲击系数的贡献百分比,并与已有研究成果进行对比,对该理论分析正确性进行了验证。研究结果表明:位移冲击系数、正弯矩冲击系数和剪力冲击系数根据第1阶竖弯频率来计算更加合理,在前3阶竖弯模态中,第1阶模态贡献了跨中最大动位移的84.4%~99.5%、跨中截面最大正动弯矩的77.2%~98.7%、支座截面最大动剪力的84.1%~99.1%;负弯矩冲击系数则根据第2阶竖弯频率来计算更加合理,在前3阶竖弯模态中,第2阶模态贡献了支座截面最大负动弯矩的70.0%~98.2%。  相似文献   

3.
为了探讨多跨曲线连续梁桥的抗震性能和减隔震方法,对基于摩擦摆球型支座的多跨曲线连续梁桥构建了有限元模型,并进行了动力特性和非线性时程分析.结果表明,桥梁模型的纵向刚度弱于横向刚度,且第1阶振型对桥墩纵向地震反应贡献较大,振型参与系数为29.8%,第6阶振型对桥墩横向地震反应贡献较大,振型参与系数为20%;在E1地震作用下,设置的摩擦摆球型支座能够使桥梁保持弹性工作状态,且支座变形和伸缩缝宽度满足要求;在E2地震作用下,部分桥墩的截面最大弯矩需求大于截面的抗弯承载能力,而进一步的桥墩强度验算发现,结果均满足抗震需求.  相似文献   

4.
以某连续刚构桥为研究对象,用有限元分析程序Midas civil构建结构模型,以时程分析的方法研究了墩间距对连续刚构桥的动力特性及地震反应的影响。结果表明:墩间距对桥梁的自振频率有一定影响,但对自振特征影响不大;当墩间距较小时(3 m),主梁的弯矩及剪力、墩底弯矩及剪力、跨中弯矩及竖向位移、梁端位移均没有明显地变化;当墩间距达到3 m,即主跨径的3/40时,梁端弯矩及剪力有较为明显地变化。  相似文献   

5.
为研究明代三孔石拱桥的抗震性能,建立永昌桥的三维有限元模型,并分析其动力特性、振型分解反应谱和地震时程,得出固有频率、模态振型、地震作用效应、地震位移,以及地震应力响应.结果表明:三孔石拱桥的第3阶扭转振型频率与前两阶平动振型频率相差不大;在抗震设防烈度为7度、E1和E2地震作用下,三孔石拱桥受力最危险的是雁翅桥台与次孔拱券交接处、分水尖与次孔拱券交接处,其他拱脚、拱券和拱顶桥面也易发生拉裂破坏.  相似文献   

6.
以城市轻轨钢筋混凝土高架桥为研究对象,分别输入脉冲型、无脉冲型近断层地震和远场地震3种不同类型的地震,建立高烈度区地震作用下的非线性全桥模型,计算了水平及竖向地震作用下桥梁的弹塑性响应,分析了地震峰值加速度与地震峰值速度比值(PGA/PGV)对桥梁地震响应的影响.研究表明,时域分析时,脉冲型近断层地震会造成较大的梁体位移;对于梁体内力,相比其他类型地震,非脉冲地震造成的桥梁惯性力可能较大.频域分析时,相比非脉冲型近断层地震及远场地震,脉冲型近断层地震在较低的频段对桥梁横向响应的影响较大;对于竖向响应,脉冲型近断层地震可以在二阶竖向自振频率影响桥梁地震响应,非脉冲型近断层地震及远场地震在一阶竖向自振频率影响桥梁地震响应.  相似文献   

7.
王一文  陈萍 《科学技术与工程》2012,12(34):9415-9419
以栗子坪大桥为实例,研究大跨径曲线高墩预应力混凝土连续刚构桥的自振特性。应用Midas有限元软件分别建立直线桥、曲率半径分别为1 500 m、2 000 m和2 500 m的曲线高墩预应力混凝土连续刚构桥的有限元计算模型,计算得到该桥梁结构的自振频率和振型。分析计算结果可以得出结论:曲线桥与直线桥的振型特征大致一样,随着曲率半径的减小,桥梁前几阶振型中各个方向振型的耦合程度变大;大跨径曲线高墩预应力混凝土连续刚构桥的第1阶振型为桥墩纵向振动,桥墩纵向弯曲刚度更弱;桥梁第2阶振型为主梁横向弯曲振动,且前15阶振型中有6阶是主梁和桥墩的横向振动,主梁横向抗弯刚度相对于竖向刚度较小;随着曲率半径的减小,基频逐渐减小,曲率半径较大(如1 500 m以上)时,曲率半径的变化对大曲率半径连续刚构桥周期的影响较小。计算结果对认识大跨径曲线高墩连续刚构桥的振动特点有较大参考价值。  相似文献   

8.
基于有限元方法,以ANSYS为平台建立了南阳淅川段习营下承式钢管混凝土拱桥三维有限元模型,采用子空间迭代法求解桥梁的自振频率和振型,并结合桥面振动实测频率,验证了桥梁模型的准确性.计算结果显示,桥梁1阶竖向振动频率的实测值与理论值接近,模型精度较高.拱桥第1阶振型为拱肋横向弯曲,第2、3阶振型均为桥面系竖向弯曲.低阶振型主要以拱肋的横向振动或桥面系的竖向弯曲为主,说明该桥拱肋横向刚度明显小于竖向刚度,桥面系横向刚度远大于竖向刚度,体现了下承式钢管混凝土拱桥的动力性能特征.计算结果为结构性能评估与抗震设计提供了依据.  相似文献   

9.
三跨变截面预应力混凝土连续梁桥的收缩徐变效应   总被引:1,自引:0,他引:1  
混凝土的收缩徐变效应是影响预应力混凝土连续梁桥受力的重要因素。混凝土收缩徐变效应研究是进行混凝土桥梁设计的前提。通过对影响混凝土收缩徐变效应的主要因素分析,揭示混凝土收缩徐变对桥梁变形和内力的影响规律。以某三跨变截面预应力混凝土连续箱梁桥为工程依托,采用有限元仿真分析方法,将连续箱梁所处环境的相对湿度、混凝土加载龄期以及运营时间对混凝土收缩徐变效应的影响进行参数分析。研究认为:混凝土收缩和徐变所引起的连续梁的竖向位移及截面弯矩均随环境相对湿度的增大而减小;随着加载龄期的延长,混凝土收缩作用引起的连续梁竖向位移与截面弯矩总体呈增长趋势,而混凝土徐变作用引起的连续梁竖向位移与截面弯矩变化较小;运营时间对混凝土收缩作用引起的梁体竖向位移影响显著,而对截面弯矩无影响,运营时间对混凝土徐变作用引起的梁体竖向位移与截面弯矩均影响较大。文中研究结果对同类工程设计提供一定的参考价值。  相似文献   

10.
预加力对梁的动力影响分析   总被引:15,自引:0,他引:15  
从一预应力简支梁出发,分析了预加力在梁的振动过程中的变化,采用相关数学物理方法,推导出了预应力梁的自由振动方程以及自振频率公式,并且得出预加力将导致梁的自振频率减少,而偏心距会引起梁的自振频率增长等结论。  相似文献   

11.
 为研究下承式钢拱桥的非线性地震响应和损伤机理,结合徐州京杭运河大桥工程,采用考虑非线性的计算方法,分析了下承式钢拱桥在强震作用下的地震响应和损伤情况。结果表明,下承式钢拱桥具有良好的抗震性能,在强震作用下损伤程度不明显;在考虑几何非线性与材料非线性条件下,拱顶面外弯矩显著增大;考虑非线性对结构横向振动与竖向振动位移响应的影响基本一致;下承式钢拱桥在拱脚、风撑端部及拱肋容易发生损伤;风撑作为连接构件是横向地震作用下的薄弱环节,在地震高烈度地区设计该类桥梁时,对上述薄弱环节应予以重视。  相似文献   

12.
减隔震设计是较为有效的抗震措施,高阻尼橡胶支座(HDR)亦因其较好的减隔震效果在公路梁桥中广泛应用。采用非线性时程分析法对软弱场地中配置不同减隔震支座的梁式桥进行地震响应分析,研究发现高阻尼橡胶支座的减隔震效果优于相同支承能力的板式橡胶支座。然而,无论是滑动式板式支座还是滑动式高阻尼橡胶支座均会导致相应桥墩处的支座位移过大,且各项地震响应与其他各墩差异较大,荷载在各墩间分配不均。通过改变边墩处高阻尼橡胶支座的刚度及类型,分析对比了支座的各项参数对桥梁结构地震响应的影响规律。研究发现全桥采用刚度相近的高阻尼橡胶支座时能够达到全桥各墩抗震性能的均衡、减小地震作用对桥梁结构及支座的破坏。  相似文献   

13.
高墩桥梁地震响应分析研究   总被引:1,自引:1,他引:0  
李静斌  葛素娟 《河南科学》2009,27(12):1571-1573
汶川地震震害结果表明,在我国西部山区普遍存在的高墩桥梁震害严重,不少高墩桥梁在高于设防烈度的大震作用下出现了上部结构落梁、桥墩倒塌或压溃等严重破坏,直接影响到抗震救灾工作的顺利开展.因此,应对其抗震设计提出更高要求.通过对一座高墩三跨连续箱梁桥的地震响应进行数值模拟计算,分析了高墩桥梁的地震响应特点,提出了高墩桥梁在大震作用下应采取防止落梁及墩柱压溃破坏的构造措施.  相似文献   

14.
自锚式混凝土悬索桥的动力分析   总被引:9,自引:0,他引:9  
研究自锚式混凝土悬索桥的动力学性能 .以一新建自锚式混凝土悬索桥为背景 ,首先运用有限元分析获得其动力特性并与地锚式悬索桥进行比较 ,然后利用实桥环境振动试验验证有限元动力特性分析结果 ,最后由地震反应分析进一步考察自锚式悬索桥的振动特点 .结果表明 :自锚式悬索桥由于主缆直接锚固于主梁端 ,主塔纵向弯曲振动频率明显降低 ;因结构耗能方式也随之发生了变化 ,主塔和主梁在纵向地震输入下的各种反应均呈不同程度的增加 .  相似文献   

15.
中低设防烈度地区全无缝桥梁抗震性能分析   总被引:1,自引:0,他引:1  
为了准确地模拟接线路面特性,对其荷载-变形和损伤进行了分析,提出了接线路面板集中弹簧简化模型.基于此,采用SAP2000建立了某座全无缝桥梁动力计算模型.对该桥进行了模态分析和地震时程分析,并与对应连续梁桥进行了对比分析;同时还进行了桥长和接线路面刚度敏感性分析.研究结果表明:中低设防烈度地区,全无缝桥梁的地震响应只有连续梁桥的24%~35%,主桥处于弹性无损状态.可见,全无缝桥梁能大幅提升中低烈度地区公路中小桥梁的抗震性能.  相似文献   

16.
以干海子特大桥为工程背景,选取不同的结构设计参数,包括墩高、柱肢坡度、轴压比、支主管管径比、平缀管竖向间距、柱肢含钢率、横撑道数、墩顶柱肢间距及柱肢截面形式,采用midas civil有限元软件构造34座三跨对称连续梁桥作为计算模型,进行E1弹性地震响应分析,研究结构设计参数对钢管混凝土格构式高墩连续梁桥抗震性能的影响规律和适用性,在此基础上进行全桥优化设计。计算结果表明,优化后的实桥模型可大大降低地震响应,改善结构内力分布。  相似文献   

17.
以一座实际的独塔斜拉桥为背景,分别以速度脉冲波和实际地震波作为地震动输入,研究了不同频谱特性地震输入下独塔斜拉桥地震响应特点.结果表明,近断层地震动的长周期速度脉冲对独塔斜拉桥的地震响应影响显著,特别是当地震动峰值速度(VP)与地面运动峰值加速度(aP)比值较大时,速度脉冲波的周期与主梁第一阶竖弯振动周期接近,塔柱、梁体、拉索和支座等受力明显增加,并可能出现支座脱空和拉索松弛等现象.进一步研究了支座脱空和拉索松弛现象,结果表明,支座脱空和拉索松弛对主梁位移、拉索索力和支座竖向反力等响应的影响较大,不考虑支座脱空和拉索松弛可能会低估梁体位移和拉索的地震响应.  相似文献   

18.
为研究升船机系统在地震作用下的响应特征,根据垂直升船机承船厢的受力特点,在承船厢的纵剖面上建立了包括平衡重子系统、主提升子系统和船厢子系统的简化力学模型,将承船厢中的水处理为理想流体,承船厢和船舶处理为刚体,推导了耦合系统的动力学方程.采用模态综合法实现了耦合方程的对称化,利用振型叠加法计算了地震作用下水体的响应和承船厢以及船的运动情况.实例分析证明,地震作用下系统响应以低频率为主,响应很小;船的存在对水体的响应有较大影响.  相似文献   

19.
隔震桥梁地震响应非线性分析   总被引:10,自引:0,他引:10  
使用铅芯橡胶支座(LRB)作为隔震设备,分析了一个典型3跨连续梁桥在4种地震作用下的系统响应。采用Bouc-Wen模型模拟LRB的力一变形非线性行为,使用有限单元方法建立系统刚度矩阵、质量矩阵和阻尼矩阵,使用龙格库塔法求解非线性方程。研究的重要参数包括桥墩的刚度、支座的屈服强度及屈服后周期,评价的主要依据是主梁振动加速度、桥墩支座位移、桥台支座位移及桥墩底部剪力和弯矩。结果表明:桥墩刚度对地震响应的隔震效果有很大的影响,随着桥墩刚度的减小,隔震效果降低,而LRB对桥墩刚度较大的桥梁有很好的隔震效果;LRB的屈服强度和屈服后周期均对隔震效果有一定的影响,不同的地震激励对系统的影响不同,对某种地震激励,存在一个最优的LRB屈服强度。  相似文献   

20.
基于混凝土材料的动力损伤特性,建立了其弹塑性损伤本构模型,将该模型应用于强震区某大断面隧道工程,分析了不同地震波入射方向、地震波强度和围岩条件下隧道结构的地震响应与动力损伤规律,探讨了大断面隧道结构的地震损伤特性和破坏机理。研究结果表明:地震波垂直、水平两种入射条件下两者衬砌的压主应力、加速度响应形态相似,但水平入射条件下衬砌结构的应力、加速度响应相较于垂直入射条件更加剧烈;水平入射时衬砌的动力损伤远大于垂直入射时的动力损伤,且动力损伤主要集中于拱腰与墙脚处;围岩条件对隧道衬砌结构的拉主应力响应以及动力损伤有显著影响,V级围岩条件下衬砌结构的最大拉应力是IV级围岩下的5.7倍;隧道结构的地震响应与动力损伤特性也受地震波强度的影响,随着地震波强度增大,应力、加速度响应峰值以及最大动力损伤量均呈现非线性增大趋势,动力损伤随之加剧且由拱腰和墙脚处逐渐向外扩展;在强震区软岩隧道抗震设计以及运营期间震后加固修复应着重注意动力损伤集中的部位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号