首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on monthly precipitation and monthly mean surface air temperature (SAT),the dry/wet trends and shift of the central part of North China and their relationship to the Pacific Decadal Oscillation (PDO) from 1951 to 2005 have been analyzed through calculating surface wetness index (SWI). The results indicate that there was a prominent drying trend and an abrupt change in the analysis period. A per-sistent warming period with less precipitation from the mid and late 1970s to present was found,and a shift process exists from the wet to the dry in the central part of North China during 1951-2005. The transition is located in the mid to late 1970s,which should be related to the shift variation of large-scale climate background. The correlation analysis has brought about a finding of significant correlativity between PDO index (PDOI) and SAT,precipitation and SWI in this region. The correlation exhibits that the positive phase of PDOI (warm PDO phase) matches warming,less precipitation and the drought period,and the negative PDOI phase corresponds to low SAT,more precipitation and the wet period. The duration of various phases is more than 25 years. The decadal variation of sea surface temperature (SST) in the North Pacific Ocean is one of the possible causes in forming the decadal dry/wet trend and shift of the central part of North China.  相似文献   

2.
气候变化与气象灾害   总被引:29,自引:0,他引:29  
回顾了国际上气候变暖背景下极端天气和气候事件研究的基本成果,重点讨论了我国旱灾、暴雨洪灾,高温热浪、霜冻、低温冷害和沙尘暴等气象灾害的变化特点。指出:在过去50多年气候明显变暖的背景下,华南,西北东部和东北东部随着降水量的减少,降水日数也显著减少,干旱化倾向十分明显;长江流域的强降水过程明显趋于增多,发生洪涝灾害的频率也趋于增加。气候变暖最显著的影响之一是无霜期显著增加。虽然在过去50多年中我国沙尘暴发生频率和范围总体趋于减少,但由于持续干旱的影响,使得1998年以来又出现沙尘暴增加的势头。  相似文献   

3.
Using meteorological observations, proxies of precipitation and temperature, and climate simulation outputs, we synthetically analyzed the regularities of decadal-centennial-scale changes in the summer thermal contrast between land and ocean and summer precipitation over the East Asian monsoon region during the past millennium; compared the basic characteristics of the East Asian summer monsoon (EASM) circulation and precipitation in the present day, the Little Ice Age (LIA) and the Medieval Warm Period (MWP); and explored their links with solar irradiance and global climate change. The results indicate that over the last 150 years, the EASM circulation and precipitation, indicated by the temperature contrast between the East Asian mainland and adjacent oceans, had a significant decadal perturbation and have been weaker during the period of rapid global warming over the past 50 years. On the centennial time scale, the EASM in the MWP was strongest over the past 1000 years. Over the past 1000 years, the EASM was weakest in 1450?C1570. When the EASM circulation was weaker, the monsoon rain belt over eastern China was generally located more southward, with there being less precipitation in North China and more precipitation in the Yangtze River valley; therefore, there was an anomalous pattern of southern flood/northern drought. From the 1900s to 1920s, precipitation had a pattern opposite to that of the southern flood/northern drought, with there being less precipitation in the Yangtze River valley and more precipitation in North China. Compared with the case for the MWP, there was a longer-time-scale southern flood/northern drought phenomenon in 1400?C1600. Moreover, the EASM circulation and precipitation did not synchronously vary with the trend of global temperature. During the last 150 years, although the annual mean surface temperature around the world and in China has increased, the EASM circulation and precipitation did not have strengthening or weakening trends. Over the past 1000 years, the weakest EASM occurred ahead of the lowest Northern Hemispheric temperature and corresponded to the weakest solar irradiance.  相似文献   

4.
近年来我国干旱灾害频繁发生,对人们生活、生产造成了严重影响。本文以贵州省为例,选用标准化降水指数为干旱指标,分析年度和季节的干旱发生频率的变化特征。结果表明:近54年来,贵州省年季和季节干旱总体上呈现阶段化趋势,整体表现为干旱增加趋势,1980s中后期和21世纪初期是干旱频发期。干旱频率在空间分布上差异显著,东部地区年尺度干旱较为常见;季节尺度上,除了夏旱高频区呈零星状分布外,其他如春旱主要发生于中部及东部地区,秋旱高发区集中分布于中部和东北部地区,冬旱常发生于贵州省北部地区。研究表明SPI指数能够较好地反映研究区年际及季节性干旱变化特征,能为该地区制定防旱抗旱措施提供理论支撑。  相似文献   

5.
Based on observed daily precipitation data, monthly gridded radiosonde upper air temperature and sea surface temperature data from the UK Met Office Hadley Centre, monthly surface air temperature from the Climatic Research Unit at the University of East Anglia and the NCEP/NCAR monthly reanalysis data, this study investigates the spatial and temporal variations of light rain events over China and the mid-high latitudes of the Northern Hemisphere during 1961-2010, and discusses the relationship between the change of light rain events and atmospheric stability, sea surface temperature and atmospheric circulation. The light rain events over East China display a decreasing trend of 3.0%/10 a in summer and winter half years. Over Northwest China, an increasing trend of 4.1%/10 a is found in winter half years, but there is no trend in summer half years. Using empirical orthogonal function (EOF) analysis, it is found that the first two principal components of light rain events over the mid-high latitudes of the Northern Hemisphere show long time scale variations in summer and winter half years. The first EOF modes (EOF1s) for summer and winter half years both depict a long-term increase in light rain events over North America and Southern Europe as well as Northwest China (except in summer half years), and a long-term decrease over most of the Eurasia (Central Europe, Eastern Europe, North Asia and East China). The second EOF mode (EOF2) for summer half year shows that light rain events increase over North America, Southern Europe and South China, but decrease over Eurasia north of 45°N from 1961 to early 1980s, while the trends reverse from late 1980s to 2010. The second EOF mode (EOF2) for winter half years indicates that light rain events increase over North America and South and North China, but decrease over Eurasia north of 40°N from 1961 to early 1980s, while the trends reverse from late 1980s to 2009. Correlation analysis and linear regression analysis suggest that EOF1s may be related to the change in atmospheric static stability associated with global warming, and EOF2s are possibly linked to the AMO.  相似文献   

6.
基于1980—2012年1457个站点小时降雨数据,研究我国中东部地区5—9月降雨集聚指数(PCI)的时空分布特征,探索PCI与不同降雨强度和不同持续时间小时降雨变量之间的关系,揭示影响PCI变化的降雨特征变量。研究结果表明:我国中东部地区PCI在0.56~0.78之间,并具有明显的区域差异。东南沿海PCI高于西北内陆,在东北、华北及四川盆地形成3个高值中心,并在海拔差异较大的地区发生突变。线性趋势分析表明,我国中东部地区近33年PCI呈上升趋势。PCI与极端降雨之间呈显著正相关,且随着降雨量的减少,相关性显著增强。  相似文献   

7.
Based on the nonlinear Lyapunov exponent and nonlinear error growth dynamics, the spatiotemporal distribution and decadal change of the monthly temperature predictability limit (MTPL) in China is quantitatively analyzed. Data used are daily temperature of 518 stations from 1960 to 2011 in China. The results are summarized as follows: (1) The spatial distribution of MTPL varies regionally. MTPL is higher in most areas of Northeast China, southwest Yunnan Province, and the eastern part of Northwest China. MTPL is lower in the middle and lower reaches of the Yangtze River and Huang-huai Basin. (2) The spatial distribution of MTPL varies distinctly with seasons. MTPL is higher in boreal summer than in boreal winter. (3) MTPL has had distinct decadal changes in China, with increase since the 1970s and decrease since 2000. Especially in the northeast part of the country, MTPL has significantly increased since 1986. Decadal change of MTPL in Northwest China, Northeast China and the Huang-huai Basin may have a close relationship with the persistence of temperature anomaly. Since the beginning of the 21st century, MTPL has decreased slowly in most of the country, except for the south. The research provides a scientific foundation to understand the mechanism of monthly temperature anomalies and an important reference for improvement of monthly temperature prediction.  相似文献   

8.
Monthly precipitation datasets collected at 160 stations in China as well as the monthly winds and humidity data derived from the US National Centers for Environmental Prediction (NCEP) were used to construct the relationship between six summer dry-wet modes in eastern China and the summer monsoon airflow northward advance in East Asia. A millennial series of the monsoon dry-wet index (MDWI) was reconstructed based on Wang??s six summer dry-wet modes in eastern China since 950 AD. A high (low) index indicates that the strong (weak) East Asian summer monsoon airflow can reach northern (southern) China and cause above (below) normal precipitation. Interdecadal periodic variations, such as the approximate 70-year oscillation, can be found in the MDWI series. In the last millennium, northern China has experienced persistent decadal wet periods and persistent decadal dry periods. At present, the MDWI is a low period on the interdecadal time scale so above-normal precipitation is observed in southern China and below-normal precipitation in northern China.  相似文献   

9.
根据1961~2010年东北地区35个主要城市站的逐日气温及降水资料,采用线性拟合、小波变换、经验正交函数分解、Mann-Kendall突变检验和R/S分析等方法,分析了我国东北地区主要城市的气温和降水的变化。结果表明:近50年东北主要城市年平均气温呈上升趋势,其中20世纪80年代后期至90年代初增温幅度最大;城市气温变化存在明显的16a尺度年代际变化周期和(7~8)a、4 a和准2 a尺度的年际变化周期,其中4a尺度的低频振荡能量最强;城市化进程对气温变化影响显著。东北地区主要城市的年降水量减少趋势明显,其中20世纪60年代中期至80年代初降水减少幅度最大;年总降水变化存在准2 a、4 a和(9~10)a尺度的年际变化周期,其中4 a和(9~10)a振荡能量最强;夏季出现特涝的概率大于特旱,大涝的几率小于大旱;同时7月份是东北局部特大洪涝或干旱的多发时段。  相似文献   

10.
The self-calibrating Palmer Drought Severity Index (PDSI) is calculated using newly updated ground observations of monthly surface air temperature (SAT) and precipitation in China. The co-variabilities of PDSI and SAT are examined for summer for the period 1961-2004. The results show that there exist decadal climate co-variabilities and strong nonlinear interactions between SAT and soil moisture in many regions of China. Some of the co-variabilities can be linked to global warming. In summer,sig-nificant decadal co-variabilities from cool-wet to warm-dry conditions are found in the east region of Northwest China,North China,and Northeast China. An important finding is that in the west region of Northwest China and Southeast China,pronounced decadal co-variabilities take place from warm-dry to cool-wet conditions. Because significant warming was observed over most areas of the global land surface during the past 20-30 years,the shift to cool-wet conditions is a unique phenomenon which may deserve much scientific attention. The nonlinear interactions between SAT and soil moisture may partly account for the observed decadal co-variabilities. It is shown that anomalies of SAT will greatly affect the climatic co-variabilities,and changes of SAT may bring notable influence on the PDSI in China. These results provide observational evidence for increasing risks of decadal drought and wet-ness as anthropogenic global warming progresses.  相似文献   

11.
中国西南秋季旱涝的诊断分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为了分析中国西南秋季旱涝情况,利用西南地区东部1961~2012年的降水资料和区域旱涝指数对该地区秋季旱涝等级进行了评定,并运用NCEP/NCAR再分析资料与英国气象局海温资料对典型旱涝年的成因进行了探讨。结果表明,西南地区东部降水呈显著减少趋势,并在1990年左右发生了突变。旱年秋季,低层在南中国海附近为显著的气旋性环流异常,西南地区上空存在显著的下沉运动,涝年则相反。进一步分析发现,当西太平洋海温偏高时,可以激发罗斯贝波环流异常,对应在南中国海附近存在异常的气旋性环流,临近的西南地区东部处于异常的下沉气流控制,容易发生干旱,涝年则相反。此外,热带西太平洋海温于20世纪80年代中后期发生了由冷转暖的突变,这与随后西南地区东部秋季降水的突变密切相关。  相似文献   

12.
采用《中国统计年鉴》和中国农业灾情数据库中的统计资料,重建了1961—2010年中国旱灾的时空分布特征.通过对旱灾时间分布特征的研究结果表明,近50年我国的干旱化程度呈上升趋势.干旱的时间分布存在几个明显的高值区和低值区,旱灾严重年份大多分布在高值区内,旱灾较轻年份大多分布在低值区内.对旱灾空间分布特征的研究结果表明,中国旱灾的空间格局存在东西分异,且以东部型为主.旱灾在不同省(市、区)的分布有很大的差异,山西、河北、内蒙古、山东等省份的旱情比较严重.另外,中国各区域旱灾的季节分布差异也很大,东北、华北和西北地区多发生春、夏旱,长江中下游地区多发生夏、秋旱,华南和西南地区多发生冬春连旱,青藏高原地区的干旱主要发生在5—7月和10月.  相似文献   

13.
Climate extremes and changes in eastern China are closely related to variations of the East Asian summer monsoon and corresponding atmospheric circulations.The relationship between frequencies of temperature and precipitation extremes in China during the last half century is investigated using Singular Value Decomposition analysis.During 1980-1996,there was a typical pattern with fewer hot days and more precipitation extremes in the northern part of eastern China,and more hot days and fewer precipitation extremes in the southern part.This geographic pattern tended to reverse after 1997,with fewer hot days and more extreme precipitation days south of the Yangtze River and vice versa to the north.Differences in atmospheric circulation between the former and latter periods are presented.We conclude that a mid-level anomalous high/low,upper-level anomalous easterlies/westerlies over the north/south of eastern China,a weakened East Asian summer monsoon and associated upper-tropospheric center of cooling(30°N,110°E) are all favorable for the changes in frequencies of temperature and precipitation extremes.  相似文献   

14.
南亚高压与我国盛夏气候异常   总被引:27,自引:0,他引:27  
利用多年逐候平均资料,分析得到盛夏南亚高压的两类平衡态-青藏高压和伊朗高压,它们又可各分为东西部型。讨论了两类平衡态及其东西部型时的温度和降水分布差异。发现:青藏高压时,高压中心及其东南地区地面气温偏高,高压西北及北面的气温明显偏低,高压东侧的东亚地区多雨.伊朗高压时,高压中心及其西北区气温偏高,高压东南区的气温偏低,在高原南侧的印度北部地区降水偏强。青藏高压东部型使长江下游及西北地区多雨,华北和华南等大片地区干旱少雨;西部型使中国西南至华北大片东北-西南走向的地区为多雨,西北地区则高温干旱。伊朗高压东部型使中国东部沿海地区多雨;西部型使中国江淮流域有 明显的多雨带。  相似文献   

15.
为了进一步统一分析夏季100hPa南亚高压脊线和中心位置与西北地区降水的关系,利用1970~1985年7~8月逐日历史天气图及降雨量等资料,统计了南亚高压脊线和中心活动的基本特征;划分了逐日东、西部型及带状型南亚高压及持续的东、西部型南亚高压过程,还区分了西北区东、西部的多雨、少雨日。结果表明:南亚高压脊线和中心位置(特别是持续的东、西部型南亚高压过程)与西北区东、西部多雨和少雨过程有密切联系  相似文献   

16.
Based on a database of 106 annually resolved tree-ring chronologies and 244 Palmer Drought Severity Index(PDSI)grid data,we attempted to reconstruct gridded spatial drought patterns in each year over the past four centuries in the arid,semiarid,and semihumid East Asia.The results showed that these regions mainly experienced drought events during the periods from AD 1601 to AD 1652,AD 1680 to AD 1718,AD 1779 to AD 1791,AD 1807 to AD 1824,AD 1846 to AD 1885,and AD 1961 to AD 1999.In the middle of the 16th century,severe droughts occurred mainly in North China;during the period from AD 1876 to AD 1878,droughts occurred in most parts of northern China;and from the 1920s to 1940s,catastrophic drought events spread across almost all of northern China and Mongolia.These historical drought events caused severe ecological and environmental problems and substantially affected the development of human society.In these regions,temperature and summer monsoon precipitation are the main factors influencing drought events.In western areas,PDSI and temperature exhibit a close relationship,whereas in eastern areas,summer monsoon rainfall is the dominant factor influencing variations in PDSI.  相似文献   

17.
18.
利用690个气象观测站数据和1982―2014年GIMMS NDVI 3g数据, 运用趋势分析、小波偏互相关分析、偏相关分析和滞后分析方法, 探究华北及周边地区33年来生长季(5―10月) NDVI的变化规律及其与气候的关系, 得到如下结论。1) 33年来, 研究区植被生长季活动整体上显著增强, 生长季NDVI由20世纪80年代的平均0.44升至2010年以来的0.49; 生长季NDVI在研究区中部区域快速增长, 而在西北部荒漠地区下降。2) 研究区生长季NDVI的上升得益于温度升高和降水增加, 其中降水的影响更大; 研究区NDVI与气温在大部分地区正相关; 除研究区东南部地区外, NDVI与降水有很强的正相关关系。3) 在15天的时间分辨率尺度下, 研究区大部分地区生长季内 NDVI对温度的响应无明显滞后, 或存在1期(15 d)滞后, 对降水的响应存在1~2 期(15~30 d)滞后, 因此从总体上看, 华北及周边地区植被生长对温度的响应比对降水的影响更迅速。  相似文献   

19.
This paper focuses on the rainfall spectrum and its evolution of North China in rainy season with summer monsoon decaying in interdecadal time scale. The interannual component of the rainfall is the dominant part, accounting for 85% of the total variance, and has been changed significantly during the last 30 years. According to wavelet analysis its 5a periodic spectrum suddenly disappeared in the late 1960s, and its biennial oscillation gradually become weaker and weaker since 1970, accompanied by the summer monsoon decaying. Contrarily, the interdecadal component is principal in the summer monsoon over North China and is very similar to the counterpart of the rainfall. Their interdecadal parts are significantly correlated, and the correlation coefficient is nearly equal to the one of the original sequences.Besides, the dry and wet climate alternated with the monsoon abrupt changes in the 1960s and the 1970s over East Asia, apart from North China, climate drifted from a light drought to a severe drought during the past 30 years.  相似文献   

20.
Tomé and Miranda’s climate trend turning discriminatory model is used to identify the spatial-temporal characteristics of the interdecadal turning of winter/summer climate modes at stations and in eight sub-areas over Chinese mainland based on the 1961–2000 observations. It is found that the stations with close occurrence years of the interdecadal trend turning (ITT) and coincident trends after the ITT exhibit a zonal distribution. A view is accordingly proposed that the interdecadal turnings of climate modes in China have remarkably regional structures. The research results show that after the early 1980s, winter climate over Chinese mainland overall trends towards a “warm-wet” mode, while summer climate had an abrupt change into “warm wet” mode in the late 1980s, suggesting that the time of the “warm-wet” mode turning for winter climate is earlier than that for summer climate. The regional characteristics and test results of the ITTs in eight sub-areas suggest that winter climate exhibits a distinctive “warm-dry” trend in North China after the late 1970s, and a slight “warm-dry” trend in Northeast China, South China, and Southwest China after the late 1980s. A “warm-wet” trend appears in the rest four sub-areas (the middle and lower reaches of the Yangtze River and the Huaihe River Valley, briefly Jianghuai, the east of the Tibetan plateau, and the east and west of Northwest China) after the early 1980s. The summer climate trends towards a “warm-dry” mode in Northeast China, North China and the east of Northwest China after the late 1980s, but a “warm-wet” mode appears in Southwest China and the east of the Tibetan plateau after the middle 1970s, as well as in Jianghuai and the west of Northwest China after the early 1980s. Specially, summer climate in South China started a “cold-wet” trend in 1984.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号