首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
改进的溶液纺丝法制备聚乳酸纤维及其模压成型   总被引:1,自引:0,他引:1  
用聚(L-乳酸)溶液纺丝制得聚(L-乳酸)纤维,干燥后进行加热取向模压,制得试样;研究压制压力和压制温度对聚乳酸材料抗弯强度及其最终相对分子质量的影响.结果表明:在用改进的溶液纺丝法制备聚乳酸纤维时,聚乳酸的提纯和纤维制备同时完成,制得的聚乳酸纤维呈扁平状,具有多孔结构.185℃时,随着压制压力的增加,聚(L-乳酸)材料的抗弯强度先增大后减小,当压制压力为110 MPa时,其抗弯强度达到最大(256.1 MPa);当压制压力为110 MPa时,聚(L-乳酸)材料的抗弯强度随着压制温度的升高先增大后减小,在180℃时达到238.8 MPa,抗弯试样断口处可观察到形成的球晶;随着压制压力和压制温度的增加,聚(L-乳酸)的相对分子质量下降.纤维模压聚(L-乳酸)的最佳工艺条件是:压制温度为185℃,压制压力为110 MPa,所得材料的抗弯强度为256.1 MPa.  相似文献   

2.
纺丝工艺对高相对分子质量Lyocell 纤维素纤维性能的影响   总被引:5,自引:0,他引:5  
使用高相对分子质量的纤维素——医用脱脂棉(铜铵法聚合度DP=1400)为纺丝原料,N—甲基吗啉—N—氧化物(NMMO)作溶剂,采用Lyocell工艺进行纺丝制备高强高模纤维素纤维;通过正交设计和系统试验,考察了纺丝工艺参数(气隙长度,拉伸比,凝固洛浓度和喷丝板孔数)对最终Lyocell纤维机械性能的影响。结果表明,对于这一体系,纺丝工艺参数对纤维的拉伸强度、初始模量及断裂伸长率都有不同程度的影响;在工艺优化的基础上,制备出了拉伸强度8.9cN/dtex,初始模量163cN/dtex的高强高模纤维素纤维。  相似文献   

3.
静电纺丝参数对聚乳酸超细纤维支架形貌的影响   总被引:1,自引:0,他引:1  
以聚乳酸为原料,采用静电纺丝技术制备纤维支架,研究了溶剂种类和工艺参数对纤维支架和纤维直径的影响规律.结果表明,采用四氢呋喃纯溶剂,所获纤维表面粗糙多孔,采用二氯甲烷可以获得表面光洁的纤维;随着纺丝液浓度的增加,电纺纤维直径增加,串珠形状由不规则形过渡至扁平形和球形,并且纤维直径显著增加;随着纺丝电压的升高,纤维直径呈下降趋势.  相似文献   

4.
聚乳酸的合成和改性研究进展   总被引:3,自引:0,他引:3  
聚乳酸类材料是一种用途广泛的生物降解高分子材料,已经成为生物医用材料中最受重视的材料之一.乳酸均聚物的合成主要有两种方法:丙交酯开环聚合法和直接缩聚法.直接缩聚法包括溶液缩聚和熔融缩聚;按照反应机制,开环聚合法包含阴离子型开环聚合、阳离子型开环聚合和配位开环聚合.本文讨论了各种聚合方法的机制和研究进展.由于乳酸均聚物合成的成本高,产物分子量低及其疏水性、脆性等性能缺陷,限制了其应用范围,目前对聚乳酸的研究主要集中在改性上,本文详细介绍了共聚、交联、表面修饰等化学改性方法和共混、增塑、纤维复合等物理改性方法的最新研究进展.并对聚乳酸的合成及改性的研究方向进行了展望,改进聚乳酸的合成工艺条件,使用无毒或低残留量的催化剂;用新材料对聚乳酸进行改性.在克服原有缺点的基础上开发出新用途的聚乳酸材料.  相似文献   

5.
电纺丝制备高聚物纳米纤维   总被引:2,自引:0,他引:2  
通过自制的电纺丝装置获得高聚物纳米纤维,发现不同高聚物纳米纤维具有不同的直径范围。对影响所得纳米纤维直径的静电压、高聚物溶液浓度等过程参数作分析,认为静电压与高聚物溶液浓度是影响试验进行的关键因素,并制约着其他工艺参数的调整。同时,结合静电喷雾及高速纺丝的理论对纺丝电子流体动力学过程作了一定探讨。  相似文献   

6.
利用静电纺丝法制备了可用于抗菌口罩滤芯层的氧化锌-左旋聚乳酸/左旋聚乳酸(ZnO-PLLA/PLLA)复合纳米纤维膜.以纤维膜的过滤性和透气性为指标,通过正交实验分析了ZnO-PLLA/PLLA共混比例、质量分数、混合溶剂中二氯甲烷/N,N-二甲基甲酰胺(DCM/DMF)的质量比例、纺丝流速、纺丝电压及纺丝时间这6个实验因素对纳米纤维膜性能的影响,优化的制备参数为ZnO-PLLA/PLLA的质量分数为8%.其中,ZnO负载量为2%,DCM/DMF质量比为6.5∶1,纺丝电压为9 kV,流速为0.004 mm/s,时间为30 min,优化条件下制备纳米纤维粗细分布比较均匀,过滤和透气性能测试结果均达到国标医用防护口罩技术要求.  相似文献   

7.
生物降解材料聚乳酸的合成与表征   总被引:1,自引:0,他引:1  
以乳酸(LA)为原料,采用直接熔融法和固相缩聚法,通过优选催化剂、分步除水、连续通氮气和高真空缩合等工艺,直接缩聚合成可用于改性的聚乳酸(PLA).研究了直接熔融法和固相缩聚法的聚合时间、体系真空度、聚合工艺等对聚乳酸分子量的影响.通过用酸值变化来监测反应的进程,用粘度法测定了产物的粘均分子量,并以红外光谱对产物进行了表征.结果表明,熔融法的最佳工艺为:辛酸亚锡为催化剂(0.5 wt%),聚合温度175℃,聚合时间12 h,体系真空度30 Pa;固相缩聚法的最佳工艺:辛酸亚锡为催化剂(0.5 wt%)、体系真空度60 Pa、聚合温度150℃、聚合时间10 h.  相似文献   

8.
L-乳酸预聚物在SnCl2·2H2O和对甲苯磺酸双催化体系下,用直接法熔融后聚合合成聚乳酸,研究了后聚合反应时间、预聚物相对分子质量等因素对聚合产物的影响,采用核磁及粘度计法测定聚合物相对分子质量,通过红外、核磁、X-射线衍射等手段对聚合物进行了表征及测试,表明在适宜的工艺条件下,熔融后聚合直接法合成较高相对分子质量的聚L-乳酸是可行的.  相似文献   

9.
聚乙烯醇静电纺丝法固定葡萄糖氧化酶   总被引:7,自引:0,他引:7  
利用静电纺丝纳米纤维具有高比表面积和多孔疏松结构的优势固定葡萄糖氧化酶,以提高酶电极的性能.通过聚乙烯醇(PVA)和葡萄糖氧化酶(GOD)共同静电纺丝的方法在金电极表面获得了固定化酶膜,用于构筑安培型葡萄糖生物传感器,膜的红外光谱、紫外-可见光谱和扫描电镜的分析均表明酶成功固定在静电纺丝形成的纳米纤维膜中.循环伏安测试表明固定化酶在静电纺丝纳米纤维中保持了活性,采用PVA静电纺丝法固定COD比利用浇铸膜法所得到的酶修饰电极对葡萄糖有更好的电流响应特性,通过在静电纺丝溶液中加入纳米金进一步提高了酶电极的电化学响应特性.  相似文献   

10.
采用DSC、X-射线衍射和密度梯度管等技术研究了二醋酯纤维的结晶、取向等结构特性,初步探讨了不同纺丝工艺对纤维结构特性的影响,发现:二醋酯纤维存在两种晶型结构,结晶度和取向度都较低;以相同二醋片为原料时,纺丝工艺对纤维的结构特性有影响但不明显,而烟用纺丝工艺和纺织用纺丝工艺之间的差别对纤维结构特性的影响则相对较大。  相似文献   

11.
聚乳酸是一种具有良好生物相容性、可降解性和可吸收性的高分子材料,被广泛应用于医用领域,受到越来越多的关注。文中综述了近年来聚乳酸合成研究的最新进展。  相似文献   

12.
A novel poly-lactic acid(PLA) based biocomposite reinforced with unidirectional high-strength magnesium alloy(Mg-alloy) wires for bone fracture fixation was fabricated by hot-compressing process. The macroscopical and microscopical impact behaviors of the biocomposite were investigated using impact experiments and finite element method(FEM), respectively. The results indicated that the biocomposite had favorable impact properties due to the plastic deformation behavior of Mg-alloy wires during impact process. While the content of Mg-alloy wires reached20 vol%, the impact strength of the composite could achieve 93.4 k J/m2, which is approximate 16 times larger than that of pure PLA fabricated by the same process. According to FEM simulation results, the complete destruction life of the composites during impact process increased with increasing volume fraction of Mg-alloy wires, indicating a high impact-bearing ability of the composite for bone fracture fixation.Simultaneously, the energy absorbed by Mg-alloy wires in the composites had a corresponding increase. In addition, it denoted that the impact properties of the composites are sensitive to the initial properties of the matrix material.  相似文献   

13.
通过溶液沉析纺丝法制备聚丙交酯-乙交酯(PLGA)纤维,观察纤维的形貌并对其进行XRD和SEM表征.采用纤维温压成形法控制压力和温度得到条形的PLGA材料结合试样断口分析,研究成型压力与温度对PLGA材料的力学性能的影响.研究结果表明:非晶多孔结构的PLGA纤维可通过溶液沉析纺丝的方法获得,其孔径为0.1~ 1.0 μm;压制压力和压制温度对材料的力学性能影响较大,材料的抗弯强度、剪切强度和抗弯模量均随着温度和压力的增大而先增大后降低;在压制压力为105 MPa,压制温度为160 ℃时,试样的力学性能比较理想,此时,其抗弯强度可达到187.3 MPa,剪切强度达到100.1 MPa,抗弯模量达到2.5 GPa,可望作为非承重部位骨折愈合内固定材料.  相似文献   

14.
对苎麻纤维(RF)进行偶联剂处理和聚乳酸(PLA)/氯仿溶液浸润处理后,采用溶液浇铸法制备PLA/RF复合材料,并观察RF处理后的表面形态及PLA/RF的等温结晶情况.结果表明:RF能够有效提高PLA/RF复合材料的拉伸强度;3种偶联剂(KH5501,KH570,A151)在80,℃下处理的RF对PLA的增强效果较在室温下处理的增强效果好;RF经过浸润处理后吸水率下降;在RF的浸润液中添加增塑剂柠檬酸三丁酯(TBC)能够提高材料断裂伸长率;通过偏光显微镜(POM)观察到,在靠近RF附近位置PLA球晶较其他位置处细小;随着TBC质量分数的增加,PLA球晶尺寸增大.  相似文献   

15.
乙二胺接枝聚乳酸亲水改性研究   总被引:1,自引:0,他引:1  
研究了乙二胺改性聚乳酸(EMPLA)的合成工艺及其亲水性能。以乳酸、马来酸酐和乙二胺为原料,合成了EMPLA,并对其工艺参数进行了优化;对聚乳酸(PLA)、马来酸酐改性聚乳酸(MPLA)、EMPLA进行了性能测试和结构表征,测定了吸湿率以研究其亲水性能力。优化的反应工艺为:在10℃反应2h、乙二胺过量20%时产率及产物纯度最高。通过酸酐间接引入亲水性的活性伯胺基团,EMPLA的平衡吸湿率比聚乳酸提高了31%。  相似文献   

16.
聚乳酸(PLA)作为一种新型生物基绿色塑料,能够广泛应用于多种领域,为解决环境污染和石油依赖等问题提供有力的材料支撑。中国科学院长春应用化学研究所针对当前聚乳酸产业化存在的关键科学和技术性难题,开展了生物基聚乳酸绿色塑料产业化关键技术的创新性研发及应用推广项目,从L-乳酸出发,突破了乳酸低聚、裂解、丙交酯精制和开环聚合等一系列关键技术问题,取得了一系列创新性成果,在世界上继美国Nature Works后第二个实现了PLA规模化生产和应用,加速推动了以聚乳酸为龙头的生物可降解塑料行业的发展。本文综述了聚乳酸关键技术研发与产业化项目的重要意义,已取得的阶段性成果,并针对聚乳酸产业化在我国的发展提出了许多对策建议。  相似文献   

17.
 综述了近年来国内外关于聚乳酸/无机纳米粒子复合材料的研究和发展状况。研究表明将聚乳酸与无机纳米粒子通过复合改性,能够明显提高复合材料各方面的性能,从而扩展了聚乳酸的应用范围。聚乳酸/无机纳米复合材料分为两类,一类是层状硅酸盐无机纳米复合材料,另一类是无机纳米刚性粒子,主要包括二氧化硅、二氧化钛、氧化镁、氧化锌等氧化物。介绍了两类复合材料的制备方法,包括原位聚合法、共混法和溶胶凝胶法,阐述了无机纳米粒子的添加对聚乳酸力学性能、热稳定性能、结晶性能、降解性能、流变性能和气体阻隔性能的影响。未来的发展方向是希望通过加入具有一定特性的纳米粒子,制备出特定功能的聚乳酸无机纳米粒子复合材料。  相似文献   

18.
介绍Richcel纤维的基本技术性能,对Richcel纤维转杯纺纱工艺特征和纺纱性能进行了分析,并通过Richcel纤维与棉混纺,确立了Richcel纤维与棉纤维混纺转杯纱的工艺流程和主要工艺参数,使设计的Rich-cel纤维转杯纱达到了较理想的质量要求.为规模生产Richcel纤维转杯纱积累了经验.  相似文献   

19.
针对PLA纤维纱线的特点,选用马铃薯变性淀粉K5为主浆料,PVA、聚丙烯酸为辅,蜡片为助剂,制定了3种经纱上浆配方,对其浆液性能、浆膜性能和浆纱性能及其他指标进行测试。对比分析,得出了PLA纤维纱线上浆的最佳工艺路线。用马铃薯变性淀粉K5替代PVA ,既满足了PL A纤维纱线上浆要求,也减少了环境污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号