首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
摩擦搅拌焊技术已成为铝合金焊接的重要手段。针对5052和6061-T6两种6 mm厚铁路货车使用的铝合金板材,采用摩擦搅拌焊设备进行焊接试验;并进行了相关检测,研究不同工艺参数对焊接质量的影响。结果表明:提高搅拌头的转速和降低焊接速度有利于降低设备的主轴轴向受力。在低转速时,摩擦搅拌焊的焊接质量较差,焊缝结构疏松,容易出现焊缝缺陷;当转速提高到1 200 r/min时,热输入能量适中,焊缝表面光滑明亮,表观质量良好。由焊缝表观可以发现,提高焊接进给速度后,焊缝表面光亮度下降,纹路变得明显,表面变得粗糙;在较高的搅拌头转速下以不同焊接速度进行焊接,其焊缝内部基本无可见缺陷,质量良好;在相同的搅拌头转速和焊接速度下,6061-T6铝合金板焊接过程中主轴压力略低于5052铝合金板。  相似文献   

2.
在搅拌摩擦焊接过程中,温度场对焊缝质量至关重要。文中就搅拌摩擦焊接过程建立了温度场变化模型,利用7075铝合金材料,基于ABAQUS有限元分析软件对该模型进行了仿真分析,并利用多组参数进行了对比实验,结果表明:(1)基于热源模型得到焊接工艺参数基本与实际相符。(2)当焊接速度越大时,焊缝周边母材发热越少,特征点温度变化越快,远离焊缝中心的母材温度越低,对焊缝处母材质量影响更少。仿真分析结果与实际焊接工艺参数相匹配,基于热源模型对材料搅拌摩擦焊接机理的研究具有一定的应用价值。  相似文献   

3.
搅拌摩擦焊温度场   总被引:2,自引:0,他引:2  
搅拌摩擦焊接过程中温度场的分布对焊缝成形质量具有重要的影响。该文结合数值模拟和实验方法,研究搅拌摩擦焊接过程的温度场。基于ALE(arbitrary Lagrangian-Eulerian)方法建立完全热-力耦合的有限元模型,对搅拌摩擦焊接过程开展数值仿真,同时在模型中考虑塑性变形产热。选取两组不同工艺参数(旋转速度分别为600 r/min和800 r/min)对温度场的分布进行计算,并在相同的工艺参数下测量焊接过程中距焊缝不同位置处的峰值温度。数值模拟和实验对比结果表明:该模型能准确地模拟搅拌摩擦焊接过程中的准稳态温度分布情况;搅拌摩擦焊峰值温度低于材料的固相线;焊缝前进侧温度稍高于后退侧。  相似文献   

4.
利用流体软件ANSYS-FLUENT建立三维搅拌摩擦加工的热与塑性流动模型,利用UDF编程对软件进行二次开发,模拟搅拌摩擦加工制备SiCp/铝基复合材料增强相颗粒的流动性,结果表明:搅拌摩擦主要的产热区域为搅拌头轴肩,远离搅拌头的区域温度降低,温度场关于加工中心线并不对称,前进侧的温度高于后退侧,搅拌头前部温度低于后部,温度梯度前部大于后部;模拟流场时发现塑性金属流动速度大小与温度高低有直接关系,轴肩边缘处材料的塑性流动速度最大,横截面流场呈"锅状"分布;根据搅拌摩擦加工过程建立追踪第二相粒子的DPM模型,轴肩作用区有少量增强相粒子越过中心线向后退侧分布,由于加工中心区域下部搅拌针作用较弱,增强相多分布在开槽位置处,但增强相颗粒整体分布于前进侧.  相似文献   

5.
为避免由材料流动不足而导致的焊接缺陷以及降低焊接过程中的作用力,提出了半固态搅拌摩擦焊. 本文以2024-T3铝合金为研究对象,进行了焊接过程中温度及显微组织分析. 温度的模拟及测量结果表明:当搅拌头的旋转速度为1600r·min-1、焊接速度为150mm/min时,稳态时焊核区的温度峰值达到了518℃,超过了焊材的固相线. 空冷条件下常规搅拌摩擦焊与水冷条件下的半固态搅拌摩擦焊焊核区的显微组织对比结果表明,利用搅拌头摩擦产热的方法可使搅拌区呈现液态金属母液中均匀悬浮着近似球形晶粒的半固态组织.   相似文献   

6.
以厚度3 mm的6061-T6铝合金板材搅拌摩擦焊对接接头为研究对象,建立热力耦合有限元模型,准确模拟了焊接过程的温度场分布及演变规律,采用光学显微观察、电子背散射衍射、显微硬度测量以及拉伸试验等表征方法,研究了焊接速度对焊接接头成形特性、显微组织和力学性能的影响机理.结果表明:接头焊核区在焊接过程中经历了完全动态再结晶,形成细小等轴晶;后退侧热影响区经历了动态回复,晶粒显著长大,晶界强化作用弱于焊核区晶粒;当焊接速度为300~800 mm/min时,接头焊缝成形良好,拉伸断裂均在焊缝后退侧热影响区,在焊接过程中受温度(400~480℃)影响显著,析出强化相溶解导致力学性能明显降低,在此焊接速度范围内,随速度的提高,接头强度增加,最高强度系数为80.86%(800 mm/min);当焊接速度进一步增加至1200 mm/min时,接头的焊接成形性变差,焊核区出现未焊合和隧道缺陷,接头拉伸试验时在焊核区发生断裂.  相似文献   

7.
针对厚度为30mm的1060铝合金板材搅拌摩擦焊对焊连接,采用在试板上加工盲孔的方法减少了焊接时大量的飞边.分析了焊缝的组织与力学性能.结果表明:1060铝合金厚板搅拌摩擦焊焊接成形良好.沿厚度方向上的抗拉强度呈先下降后上升的趋势,热影响区与热机影响区之间金属流动性不同,存在明显的结合线,由于该区域组织存在不连续性导致应力集中,拉伸试样的断裂位置主要存在于热影响区与热机影响区的交界处.在焊接接头上部与中部的后退侧的显微硬度高于前进侧,而下部后退侧的显微硬度低于前进侧;焊缝中部的显微硬度随着厚度增大而减小得比较明显,而前进侧与后退侧的减小程度比较小.  相似文献   

8.
采用不同结构的搅拌头和工艺参数,焊接热输入和材料流动行为不同,焊缝缺陷的类型也不同.基于Deform软件建立了A7N01材料搅拌摩擦焊仿真模型,通过焊接试验的测温曲线和缺陷完成了模型准确性评价.对比分析了3种搅拌头对焊接缺陷形成的影响.搅拌头结构不同,不同深度处的材料粒子点的切向填充速度不同.圆台搅拌头焊接多出现隧道缺...  相似文献   

9.
利用搅拌摩擦焊(FSW)对纯铝和T2紫铜进行对接焊接时,为了获得最优工艺参数,提高焊缝质量,本研究采用不同固定位置、不同转速和不同偏移量下,Cu-Al异种材料FSW对接焊接的工艺过程。结果表明:当Cu板固定在前进侧时,在搅拌头旋转速度为1 000 r/min、焊接速度为100 mm/min、偏向铝侧2 mm的工艺参数下,可以获得高质量焊缝,焊接工艺参数与焊缝表面形貌、力学性能和微观组织以及焊缝质量密切相关。该工艺参数下焊缝的强度、硬度等力学性能基本接近于母材。通过对本研究焊缝微观组织的分析发现,焊核区晶粒发生动态再结晶并获得细化的等轴组织,热机影响区受搅拌头作用扭曲变形,晶粒沿塑材流动方向纤维化,热影响区受温度梯度影响较母材区晶粒粗大化。  相似文献   

10.
以厚度为10mm的7022铝合金为对象进行搅拌摩擦焊接试验,研究了搅拌摩擦焊工艺参数对接头组织和力学性能的影响.结果表明:焊接接头具有良好的力学性能,在搅拌头转速为400r/min、焊接速度为100mm/min时,7022铝合金的搅拌摩擦焊接头抗拉强度和屈服强度分别达615MPa和533 MPa,均超过了母材;焊接接头的显微硬度略低于母材;断口形貌分析表明,7022铝合金搅拌摩擦焊接件拉伸断裂为韧性断裂.  相似文献   

11.
针对高强铝合金A17075选区激光熔化(selective laser melting,SLM)过程中未知的熔池变化规律和层间作用影响产品成形效率和精度的问题,研究不同工艺参数(激光功率和扫描速度)对各成形层熔池形态和温度场的影响。利用有限元分析软件ANSYS建立金属薄壁件SLM成形的多层多道温度场有限元模型,同时,利用APDL(ansys parametric design language)语言编程模拟了激光热源的加载、激光功率与扫描速度,采用“单元生死”技术描述金属粉末材料的动态增长过程,得出瞬态温度场的分布状况。结果表明,激光功率与扫描速度各自影响不同的温度场因素,适合Al7075粉末的SLM工艺参数为功率250~300 W,速度800~1 000 mm/s。本文得到了激光功率和扫描速度的合理范围,为高强铝合金SLM实际实验提供理论参考。  相似文献   

12.
采用有限元法对双辊铸轧7075和7050铝合金的工艺过程进行了数值模拟,研究了合金成分和铸轧速度对铸轧熔池内温度场、流场和凝固场的影响规律。结果表明,在同一铸轧速度条件下,随着合金的等效比热增大,合金在铸轧熔池内的温度梯度随之减小,凝固速率减慢;对于同一种合金,随着铸轧速度增加,合金的速度梯度随之增大,熔池内所形成漩涡的位置下降。模拟结果为下一步的铸轧实验提供了理论依据。  相似文献   

13.
5083铝合金焊接接头的力学性能是影响产品质量的关键因素之一.设定不同TIG焊工艺,用6012铝合金焊丝对10 mm厚的5083铝合金板进行焊接.焊接试样分为四组,在氩气流量、层间温度相同的情况下,四组试样分别采用五层不同焊接电流、焊速、不填丝自熔或加硼方式的焊接工艺.通过对四组试样进行拉伸实验、断口形貌观察,结合金相组织分析,探究TIG焊工艺对5083铝合金焊接接头力学性能的影响.结果表明:中厚板5083铝合金TIG焊接,采用6012铝合金焊丝,层间温度控制在80 ℃,第五道焊道采用不填丝自熔时,焊接接头的综合力学性能最好.  相似文献   

14.
We have experimentally determined the as-cast structures of semi-continuous casting 7075 aluminum alloy obtained in the presence of dual-frequency electromagnetic field. Results suggest that the use of dual-frequency electromagnetic field during the semi-continuous casting process of 7075 aluminum alloy ingots reduces the thickness of the surface segregation layer, increases the height of the melt meniscus, enhances the surface quality of the ingot, and changes the surface morphology of the melt pool. Moreover, low-frequency electromagnetic field was found to show the most obvious influence on improving the as-cast structure because of its high permeability in conductors.  相似文献   

15.
A 0.3 wt% graphene nanoplatelets(GNPs) reinforced 7075 aluminum alloy matrix(7075 Al) composite was fabricated by spark plasma sintering and its strength and wear resistance were investigated. The microstructures of the internal structure, the friction surface, and the wear debris were characterized by scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Compared with the original 7075 aluminum alloy, the hardness and elastic modulus of the 7075 Al/GNPs composite were found to have increased by 29% and 36%, respectively. The results of tribological experiments indicated that the composite also exhibited a lower wear rate than the original 7075 aluminum alloy.  相似文献   

16.
电机在提供动力的同时会产生大量的热量;一般采用铝合金水冷电机外壳为电机降温来保证其使用寿命。铝合金水冷电机外壳采用焊接的方式来保证其水道的密封性。与传统的熔化焊相比,搅拌摩擦焊方法以及合理的焊接工艺能够有效地减少焊接缺陷、降低热输入、提高产品的一次合格率。搅拌摩擦焊工艺过程可在此类铝合金产品中推广应用,为此类产品在后续新能源领域的发展提供坚实的基础。  相似文献   

17.
为了研究不同试件形状对铝合金摩擦叠焊单元成形的影响,选取7075铝合金为试验对象,使用ABAQUS有限元软件,对摩擦叠焊单元成形这一复杂的热力耦合过程进行数值模拟,在将其简化为二维轴对称模型的基础上,采用FRIC子程序和网格重划分技术进行分析.对比温度云图、变形情况以及应力分布,结果表明:试件形状能够影响焊接缺陷产生的以及缺陷的尺寸;相对于焊棒形状,焊孔形状对焊接缺陷产生的影响更大,直角焊孔对塑性金属的流动阻碍作用最大,倒角焊孔次之.圆角焊孔阻碍作用最小,更容易得到较好的焊接质量.  相似文献   

18.
利用ABAQUS有限元软件,首先针对铝合金试件的淬火过程建立了数学模型,进行热传导分析,根据所求得的瞬态温度场修正该瞬时的材料弹塑性性质.在分析瞬态应力场时,导入已生成的温度场,从而实现准耦合模拟.在此基础上分析了板材内外部的温度变化情况及热应力分布情况.  相似文献   

19.
用电磁搅拌抑制LD10CS铝合金焊缝热裂纹的研究   总被引:14,自引:1,他引:13  
通过对间歇交变纵向磁场作用下LD10CS铝合金TIG氦弧焊焊缝的宏观、微观组织分析,研究了电磁搅拌方法对铝合金焊缝结晶裂纹的影响规律,探讨了电磁搅拌抑制LD10CS铝合金焊缝金属结晶裂纹的机理,并得到了试验条件下最佳的磁场参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号