首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
近液相线半连续铸造中凝固组织的多尺度模拟   总被引:2,自引:0,他引:2  
建立了描述连续铸造过程的温度场模型及相变模型,通过固相率变化将宏观和介观尺度上的模拟耦合起来.利用外推边界条件对Al-Cu合金在近液相线半连续铸造过程的稳态温度场进行了计算;根据连续铸造特点,提出了用液/固相变区域中元胞的平均过冷度作为形核计算的基本参数,避免了铸件中心区域的多余形核问题.对Al-(3.5~10)%Cu合金、铸造速度为2.0 mm/s的液相线铸造的凝固组织进行了模拟,并且ZL201合金的模拟结果与实验吻合.计算表明:合金成分对半固态合金组织的形成有较大影响,当合金质量分数在(8~10)%时可获得晶粒大小和分布良好的合金组织.  相似文献   

2.
Fe—C—Cr—Mn系耐磨合金的结构设计   总被引:3,自引:0,他引:3  
在总结了Fe-C-Cr系铸造金属基础上提出Fe-C-Cr-Mn系铸造合金碳化物体化比和奥氏体基体成分计算公式,并熔炼一系列实验合金进行了验证,按此计算了方法,可以进行Fe-C-Cr-Mn系亚稳奥氏体基耐磨合金结构设计,并为进一步实现合金结构设计的计算机模拟打下了基础。  相似文献   

3.
连续铸造稳态温度场非物理边界条件的确定   总被引:4,自引:1,他引:3  
建立了描述连续铸造过程的温度场模型,用外推法得出凝固金属在结晶器出口侧的非物理边界条件模型,使稳态温度场的计算精确高效.利用该温度场模型及非物理边界条件模型计算了Al-Cu合金在半连续铸造过程中的稳态温度场,并以此确定的介观温度场作为液固相变模拟的条件,用多尺度计算技术模拟了Al-10%Cu合金在不同浇注温度时的凝固组织,得到了晶粒形貌和分布合理的微观组织.对ZL201合金的近液相线铸造组织的模拟结果与实验吻合.研究表明:该温度场模型及非物理边界条件模型适于稳态连续铸造过程的模拟,并可为金属凝固组织的多尺度模拟提供正确的温度场数据.  相似文献   

4.
用多尺度模拟方法研究了半连续铸造过程与Zl201合金成分近似的5%Al-Cu合金凝固组织受铸造速度的影响。建立了温度场模型和相变模型。通过固相率的变化把温度场计算和微观组织模拟从宏观尺度和介观尺度耦合起来。将宏观尺度上计算出的稳态温度场映射到介观尺度上。利用液固相变区中原胞的平均过冷度确定半连续铸造过程中各元胞的形核,采用溶质扩散模型描述晶粒长大。针对选定对象模拟了浇铸温度为930 K,铸造速度在(1.5~3.5)mm/s时微观组织的演变。结果表明,当铸造速度在2.0 mm/s时得到的微观组织均匀、细小,模拟结果与实验结果吻合。  相似文献   

5.
采取用解析方法计算重叠矩元和Fock矩阵元中的单中心积分、对用数值方法计算的原子间的Fock矩阵元进行校正的方法,结合过渡态技术,可以大幅度地提高用DV-X_αSCC方法计算体系总能量的精度,从而可以用该方法计算分子几何结构和振动力常数。对F_2,CO_2,BF_3,CF_4,等10个不同类型分子(离子)的计算结果与实验符合良好。  相似文献   

6.
通过在含Mg量为5%和10%的铸造Al-Mg合金中加入一定量的SJAM添加剂,并采用特殊的金属型铸造工艺,研究了这两种合金的机械性能和耐蚀性。结果表明,在铸造Al-Mg合金中加入SJAM添加剂,可获得较高的机械性能和较好的耐蚀性,合金的韧性也得到较大的提高。  相似文献   

7.
本文详细地论述了对在旋转磁场作用下Al-Cu合金的铸造试验,给出本试验的目的、方法、过程以及实验原理,并分析了铸造后的Al-Cu合金的组织和性能。  相似文献   

8.
本文以铸造中锰钢为例,采用最小二乘法,Gauss 消元法和秦九韶法,通过 C_(10)电子计算机,建立了合金元素与加工硬化(HV)之间的函数关系式。结果表明:用此方法处理中锰钢比其它方法精度高,计算快,计算方程式符合实验规律。从回归曲线可知在试验取值范围内,随着 C、N 含量增加,加工硬化性能提高,随着含 Nb 量增加,加工硬化性能先提高,随后又降低。高密度位错和相变马氏体是产生加工硬化的主要原因。  相似文献   

9.
铁铬镍铝双相耐热合金钢的研制   总被引:3,自引:0,他引:3  
通过各有关化学元素调配,利用铸造方法,得出几种成份Fe-Cr-Ni-Al耐热合金。利用X-线射衍射,电镜扫描等试验方法对此类钢种进行分析,得出了本钢种在1250℃时具有优良的高温抗氧化性能的结论。  相似文献   

10.
复合铸锭包覆铸造的数值模拟   总被引:2,自引:0,他引:2  
建立了一个用来描述4045/3003复合铸锭包覆铸造过程的数学模型,对包覆铸造过程中的流场和温度场进行了数值计算,重点针对铸造速度对流场、温度场的影响规律,并将计算结果和实验测温结果进行了对比.结果表明,适当提高铸造速度有利于两种合金的复合,但是铸造速度过大时,导致芯材支撑层厚度太薄、温度太高,以致复合界面处发生重熔,复合失败,为保证包覆铸造过程的顺利进行,较为合理的铸造速度应为100mm/min.计算结果和实验测温结果存在良好的对应关系,微观组织表明两种合金的结合是一种冶金结合,模拟结果可有效预测界面复合成功与否,对进一步优化包覆铸造工艺方案提供科学指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号