首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
同步硝化反硝化研究进展   总被引:6,自引:0,他引:6  
同步硝化反硝化工艺同传统的生物脱氮工艺相比,可以节省碳源,减少曝气量,降低设备运行费用等优点,具有很大的发展前途。文章结合国内外研究,从微环境理论、微生物学理论和中间产物理论方面对同步硝化反硝化的产生机理进行了综述,并分析了同步硝化反硝化的实现条件和影响因素。  相似文献   

2.
在对硝化基础反应动力学和反硝化基础反应动力学分析的基础上,建立了一体式膜生物反应器中的同步硝化反硝化反应动力学模型。通过一体式膜生物反应器运行的实验数据和模型推导,求得的硝酸盐饱和常数KNO3要远远高于传统单级反硝化过程中的硝酸盐饱和常数,从量化的角度解释了同步硝化反硝化现象。  相似文献   

3.
同步硝化与反硝化工艺同传统的生物脱氮工艺相比,可以节约氧和碳源的耗量,大大降低设备运行费用,具有很大的发展前途.结合国内外研究,主要从生物学、生物化学和微环境理论的角度对这一技术进行了综述,对一些同步硝化反硝化新工艺进行了介绍.  相似文献   

4.
应用SBR法对毛皮废水进行了处理。讨论了SBR法硝化与反硝化的规律,并且对硝化和反硝化阶段进行了动力学分析,确定了反应级数,并求得反应速率。  相似文献   

5.
结合国内外最新研究成果,阐述了同步硝化反硝化技术的影响因素及其研究进展。  相似文献   

6.
采用SBR处理模拟低碳污水,考察了同步硝化反硝化(SND)过程中氮的变化规律,在此基础上结合硝化、反硝化动力学和物料平衡原理,建立了SND过程的动力学模型.结果表明,SND过程中的硝酸盐饱和常数KD高于常规单级反硝化过程的常数.由动力学分析可知,反硝化过程是SND过程的控制步骤,保持较高的硝酸盐浓度或梯度有利于稳定的SND过程.  相似文献   

7.
本文介绍了SBR法硝化、反硝化及连续硝化、反硝化的反应规律。试验结果表明,脱氮进行的顺利与否,主要决定于硝化反应完成的程度。但在反硝化过程,不投加有机碳源的反硝化速率远远低于投加有机碳源的速度。因此,在反硝化时,投加一定的碳源是必要的,它可以加快反硝化速率,缩短反应时间并减小反应器容积。  相似文献   

8.
短程硝化反硝化生物脱氮技术综述   总被引:1,自引:0,他引:1  
简要介绍了脱氮原理以及短程硝化反硝化理论,在此基础上详细阐述了影响亚硝酸积累的因素以及短程硝化反硝化理论的研究进展,并引例了应用短程硝化反硝化原理的一些新工艺,对含氨较高和碳源不足的废水处理提供一些参考。  相似文献   

9.
DO对膜生物反应器中同步硝化反硝化的影响   总被引:1,自引:0,他引:1  
采用人工配制的生活污水作为原水,考察了在膜生物反应器(MBR)中不同溶解氧(DO)对于同步硝化反硝化效果的影响.结果表明,将试验条件控制在TN容积负荷为0.35 kgN/(m3*d)、HRT为6 h、SRT为30 d、pH为7~8、温度为25~28 ℃、C/N为9时:在反应器DO的质量浓度为0.6 mg/L条件下,可获得62.5%的NH+4 -N去除率、91.1%的反硝化率和58.3%的SND率;在反应器DO的质量浓度为1.0 mg/L条件下,可获得90.8%的NH+4-N去除率、90.4%的反硝化率和82.5%的SND率;在反应器DO的质量浓度为1.4 mg/L时,可获得93.3%的NH+4-N去除率、77.0%的反硝化率和72.1%的SND率.  相似文献   

10.
以模拟废水为对象,在传统的流化床反应器内,将活性污泥和经驯化的反硝化污泥按适当比例混合后,用聚乙烯醇(PVA)加适当添加剂将其包埋,并对短程硝化反硝化脱氮进行了研究.结果表明,在进水NH4+-N平均为53.60mg/L,COD为281.19mg/L,HRT12h,调控温度、溶解氧、pH等,出水亚硝化率和TN去除率分别可达95%和85%以上,短程硝化反硝化脱氮较理想.当进水COD含量从150mg/L增加到750mg/L,TN去除率从73.66%提高到96.79%.适合包埋颗粒短程硝化反硝化脱氮的最佳溶解氧浓度约为4.0mg/L.当pH一直维持在8.0左右,温度从30℃降到25℃过程中,短程硝化反硝化并未遭破坏.当温度维持在25℃,pH从8.0降到7.5,连续运行约5个周期后,短程硝化反硝转变为全程的硝化反硝化.  相似文献   

11.
王巍 《科技资讯》2012,(16):132-133
近年来各种新型、改良型的高效废水处理技术应运而生,其中的膜生物反应器(Membrane Bioreactor,简称MBR)组合工艺在废水处理中的应用格外引人注目。由于该工艺具有出水水质好、设备占地面积小、活性污泥浓度高、剩余污泥产量低和便于自动控制等优点,其应用前景巨大,同时该工艺中同步硝化反硝化起到决定性作用,本文通过小试方法模拟MBR工艺系统,对同步硝化反硝化过程进行研究,为同步硝化反硝化的工程应用提供理论参考。  相似文献   

12.
对微生物硝化、反硝化的机理及作用的相关酶及近年来的研究热点问题进行了探讨。综述了分子生态技术在微生物群落结构分析的操作步骤及应用情况, 分析了荧光原位杂交、变性梯度凝胶 电泳及末端限制性片段多态性技术的原理、操作流程、优缺点及其在硝化和反硝化中的应用。以往 的研究表明分子生态技术已成为环境中硝化和反硝化过程及机理研究的有力工具。  相似文献   

13.
同步硝化反硝化脱氮及处理过程加N2O的控制研究   总被引:5,自引:0,他引:5  
由于水体富营养化和温室气体控制的需要,使得具有高效率脱氮,同时N2O逸出最少化的水处理技术的研究开发变得十分迫切。8本文报道了采用新型同步硝化反硝化工艺(SND)的研究成果,与传统顺序式硝化反硝化(SQND)技术相比,SND工艺的脱氮与SQND的效率相近,可随溶解氧浓度降低而提高,但N2O逸出量显著降低,且碳氮比的提高可进一步减少N2O的排放。  相似文献   

14.
同步硝化反硝化脱氮及处理过程中N2O的控制研究   总被引:11,自引:0,他引:11  
由于水体富营养化和温室气体控制的需要 ,使得具有高效率脱氮 ,同时N2 O逸出最少化的水处理技术的研究开发变得十分迫切 .本文报道了采用新型同步硝化反硝化工艺 (SND)的研究成果 .与传统顺序式硝化反硝化 (SQND)技术相比 ,SND工艺的脱氮与SQND的效率相近 ,可随溶解氧浓度降低而提高 ,但N2 O逸出量显著降低 ,且碳氮比的提高可进一步减少N2 O的排放  相似文献   

15.
一株戴尔福特菌的异养硝化与好氧反硝化性能研究   总被引:1,自引:0,他引:1  
通过在好氧反硝化培养基中添加氨氮和在异养硝化培养基中添加硝基氮,研究了从实验室SBR反应器中新分离的一株戴尔福特菌的异养硝化作用与好氧反硝化作用的相互影响.研究表明:加入氨氮后,24 h后的硝基氮去除率最大可提高1.47%,48 h后菌体生长较为旺盛,氨氮去除率则均在90%以上;同时发现加入硝基氮后,菌体生长推迟,但氨氮去除率最大可提高4.16%.异养硝化与好氧反硝化作用之间是相互促进的.此株戴尔福特菌可在同一条件下自身实现同步硝化反硝化,具有一定的工程应用价值.  相似文献   

16.
短程硝化反硝化生物脱氮   总被引:1,自引:0,他引:1  
对短程硝化反硝化的脱氮机理、影响因素、控制途径及实验研究和工业应用情况进行了分析和综述,探讨了实现HNO2积累的途径。  相似文献   

17.
短程硝化-反硝化生物脱氮技术研究   总被引:1,自引:0,他引:1  
对传统生物脱氮工艺原理和短程硝化-反硝化工艺原理进行了比较,分析了短程硝化-反硝化技术的实用价值,并就实现该技术工艺的控制因素进行了探讨.  相似文献   

18.
简要介绍了同步硝化反硝化生物脱氮SND的机理和移动床生物膜反应器(MBBR)的特点,总结了MBBR实现同步硝化反硝化具有的优越条件,并具体分析实现MBBR同步硝化反硝化生物脱氮的主要控制因素,最后阐明了国内该技术的应用前景及研究方向.  相似文献   

19.
采用序批式反应器(SBR)进行猪场废水厌氧消化液好氧后处理,研究后处理过程中亚硝化/硝化调控因素.在厌氧消化液中配入原水比例10%-30%(V/V)的试验中,配水比例越低,反应体系pH值越低,出水氨氮浓度越高,亚硝化率也越高.在曝气量100L/h-260L/h的条件下,曝气量越大,出水氨氮浓度越低,亚硝化率也越低.一个运行周期的监测数据反映出:曝气结束时氨氮浓度和溶解氧是影响硝化进程的主要因素.只要将曝气控制在氨氮刚好氧化完全时停止,即使大的曝气量也能达到高的亚硝化率(87%以上),用硝化过程动力学常数能很好解释这种现象.在进水氨氮浓度524937mg/L范围内,进水氨氮浓度越高,出水氨氮浓度越高,但是亚硝化率平均值都在75%左右,说明进水NH3-N浓度对亚硝化率没有影响.试验结果表明:通过调控出水氨氮浓度和溶解氧可以将硝化进程控制在亚硝化阶段.  相似文献   

20.
在常温、低氨氮浓度下,通过控制DOC质量浓度在0.5~1.2 mg/L,在SBR反应器中成功实现短程硝化与同时硝化反硝化工艺的耦合;亚硝酸累积率达到78.5%,总氮损失率达到28.1%;研究了有机负荷和pH对耦合工艺的影响,结果表明,有机物负荷增加有利于提高耦合工艺总氮的去除率,负荷从0.11上升到0.47时,TN的去除率从18.0%上升至41.9%;本实验条件下耦合工艺最佳pH在7.6左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号