首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
江西杉木人工林生物量分配格局及其模型构建   总被引:1,自引:0,他引:1  
在省级尺度上分析不同林龄杉木生物量数据,以探索江西省杉木人工林生物量的动态分配格局及其准确估算方法。结果表明:江西省杉木人工林生物量变化范围为55.64~165.22 t/hm2,其乔木层生物量占94.2%以上。杉木林及其乔木层生物量随林龄先增加后略微下降,而各林龄的灌木层、草本层和凋落物层生物量均没有显著差异。幼龄林、近熟林、成熟林各组分生物量大小排序均为乔木层>凋落物层>灌木层>草本层,而在中龄林和过熟林中则为乔木层>凋落物层>草本层>灌木层。幼龄林各器官生物量大小排序为树干>叶>根>枝,而其他林龄中的排序均为树干>根>枝>叶。以胸径(D)为单变量的杉木单株生物量(W)模型(W=0.266D2.069)及以胸径(D)和树高(H)为变量的模型(W=0.046 9(D2H)0.906 4)预测值小于测量值,且预测精度R2均为0.84,其精度和预测能力均低于以胸径、林龄(A)、密度(N)为自变量的生物量模型(W=11.497D1.847A0.082N-0.478)。  相似文献   

2.
2010年5月—2011年4月,对福建九龙江口秋茄(Kandelia obovata)中龄林(24年生)和成熟林(48年生)凋落物的年凋落物量、组成及其动态特征进行研究.结果表明:秋茄中龄林和成熟林年凋落物量分别为13.02和10.08t/hm~2;各组分凋落物中,落叶量和落枝量占凋落物总量的比例为中龄林(65.74%,26.04%)成熟林(54.17%,20.43%),落花量和落果量则是成熟林(11.31%,14.09%)中龄林(5.84%,2.38%).秋茄中龄林的年凋落物量明显高于成熟林,是因为受林分密度和生长发育阶段影响:24年生秋茄林属中龄林,处于生长期,生长非常迅速,自疏现象比较明显,凋落物较多,导致其凋落物量高于成熟林;而48年生秋茄林属于成熟林,生长趋于稳定,凋落物反而较少.这说明秋茄林凋落物是一个巨大的养分贮存库,有助于维持红树林区的生物资源,提高河口生态系统的生产力.  相似文献   

3.
【目的】研究重庆缙云山国家级自然保护区3种典型林分常绿阔叶林、针阔混交林、楠竹林内凋落物的持水性。【方法】将3种凋落物共81袋凋落物先后经过72h的浸水与风干实验,测定各时间点凋落物鲜质量,并计算凋落物持水量(W)、持水率(R)、持水速率(V)、失水量(W′)、失水率(R′)、失水速率(V′)等指标。【结果】凋落物储量为(2.46±0.65)t·hm~(-2),最大持水量为(5.97±1.57)t·hm~(-2),最大持水率为(260.85±23.23)%,最大失水量为(4.80±1.20)t·hm~(-2),最大失水率为(198.78±27.28)%。经过回归分析,3种林分内凋落物的持水量、持水率、失水量与时间的最适模型为W=a+blnt(R=a+blnt),失水率、持水速率、失水速率与时间的最适模型为V=at b(R=at b)。【结论】3种典型林分中楠竹林凋落物具有储量大、持水量大、持水快速等优势,水源涵养能力最好。  相似文献   

4.
为揭示不同发育阶段杉木人工林凋落物及不同组分的持水特性,选择福建三明莘口教学林场11年、22年和34年生杉木人工林为研究对象,对其凋落物的现存量、持水特性及对降雨的拦蓄能力进行分析测定.结果表明:杉木凋落物现存量表现为老龄林>中龄林>幼龄林,各林分凋落物现存量表现为叶凋落物占比例最大,花果占比例最小;最大吸水速率、最大持水率、最大拦蓄率和有效拦蓄率均表现为中龄林>老龄林>幼龄林,最大持水量、最大拦蓄量和有效拦蓄量均表现为老龄林>中龄林>幼龄林.凋落物不同组分中,幼龄林和成龄林最大持水率、最大吸水速率、最大拦蓄速率和有效拦蓄率均表现为叶最大,枝最小,中龄林表现为其它组分最大,叶次之;不同发育阶段杉木凋落物不同组分的最大持水量、最大拦蓄量和有效拦蓄量均表现为叶所占比例最大,花果最小.老龄林与中龄林和幼龄林相比,其凋落物现存量大具有较好的持水特性;凋落物中叶具有较大的拦蓄降雨能力.  相似文献   

5.
【目的】研究重庆缙云山国家级自然保护区3种典型林分常绿阔叶林、针阔混交林、楠竹林内凋落物的持水性。【方法】将3种凋落物共81袋凋落物先后经过72h的浸水与风干实验,测定各时间点凋落物鲜质量,并计算凋落物持水量(W )、持水率(R)、持水速率(V)、失水量(W’)、失 水 率(R’)、失 水 速 率(V’)等 指 标。【结 果】凋 落 物 储 量 为(2.46±0.65)t·hm-2,最大持水量为(5.97±1.57)t·hm-2,最大持水率为(260.85±23.23)%,最大失水量为(4.80±1.20)t·hm-2,最大失水率为(198.78±27.28)%。经过回归分析,3种林分内凋 落 物 的 持 水 量、持 水 率、失 水 量 与 时 间 的 最 适 模 型 为W=a+blnt(R=a+blnt),失水率、持水速率、失水速率与时间的最适模型为V=atb(R=atb)。【结论】3种典型林分中楠竹林凋落物具有储量大、持水量大、持水快速等优势,水源涵养能力最好。
  相似文献   

6.
【目的】森林碳储量在陆地生态系统碳库中占主体地位,通过确定人工乔木林碳密度和植被固碳增值碳储量,预测人工乔木林碳汇潜力,为改善人工乔木林的林龄和树种结构、提高森林可持续经营水平,进而为提高人工乔木林单位面积蓄积量提供科学依据,助力我国实现增汇减排的目标。【方法】比较分析我国第8次(2009—2013)和第9次(2014—2018年)森林资源清查中各优势树种人工林的面积和蓄积量数据,采用联合国政府间气候变化专门委员会(IPCC)材积源-生物量法(volume-biomass methods)分别估算并对比我国6种主要树种人工乔木林的碳储量和碳密度,分析人工乔木林碳储量和碳密度在两次森林资源清查期间增值部分的碳贡献率,综合评价我国不同林龄结构人工乔木林的固碳功能;采用拟合的单位面积蓄积-林龄的Logistic回归生长方程,结合IPCC材积源-生物量法,预测不同龄级各优势树种的蓄积量,估算我国现有人工乔木林未来15年及至2035年的碳汇增值潜力。【结果】两次森林资源清查期间,我国主要人工乔木林总碳储量增加了498.81 Tg,年均增加量99.76 Tg。第9次资源清查结束时,6个主要树种不同林龄(组)人工乔木林的碳储量由大到小依次为过熟林(439.19 Tg)>成熟林(426.43 Tg)>近熟林(359.75 Tg)>中龄林(292.34 Tg)>幼龄林(105.15 Tg),分别占人工乔木林总碳储量的27.07%、26.28%、22.17%、18.02%和6.47%;不同龄组的碳密度从小到大依次为过熟林(59.17 Mg/hm2)<幼龄林(169.12 Mg/hm2)<成熟林(178.13 Mg/hm2)<近熟林(190.38 Mg/hm2)<中龄林(348.09 Mg/hm2)。到2035年,我国主要树种人工乔木林碳储量和平均碳密度将分别达到1 716.27 Tg和36.51 Mg/hm2,与2015年相比分别增加92.92%和93.17%。【结论】两次森林资源清算结果相比,6种主要树种人工乔木林的碳储量均有显著增加,随着林分的不断成熟,碳储量呈现出线性正向增加的趋势,而碳密度受蓄积量与面积比的影响其增幅各不相同;至2035年人工乔木林碳储量约占乔木林总碳储量的20%,可以预见中国人工乔木林碳储量有很大的增加潜力。  相似文献   

7.
【目的】凋落物是森林净生产量的重要组分,探讨森林凋落物生产及其养分归还量对氮磷添加的响应,为亚热带常绿阔叶林可持续经营提供科学依据。【方法】选择安徽池州亚热带常绿阔叶林,包括甜槠(Castanopsis eyrei)老龄林和苦槠(C. sclerophylla)中龄林,开展氮磷添加试验,设置3个处理,即氮[N 100 kg /(hm2·a)]、氮+磷[N 100 kg /(hm2·a) +P 50 kg /(hm2·a)]和对照(CK,无氮磷添加)。采用凋落物收集框法,对林分凋落物生产量及其养分归还量进行了为期1年的监测(2017年5月至2018年4月)。【结果】N+P处理下,苦槠林和甜槠林总凋落物量最高值分别为9.502、7.120 t/(hm2·a);其次是N处理,分别为8.393、7.041 t/(hm2·a);CK林分分别为7.724和6.697 t/(hm2·a),氮磷添加提高了总凋落物量,但不同处理间没有显著差异。在N处理和对照条件下,两林分凋落物各组分所占比例由大到小顺序均为:落叶、落枝、碎屑、落花落果。但在N+P处理的苦槠林中由大到小依次为:落叶、落枝、落花落果、碎屑。N处理下,苦槠林和甜槠林凋落物年均氮含量分别为14.199和13.648 g/kg,N+P处理分别为13.863和13.650 g/kg,CK林分分别为13.384和13.094 g/kg。各处理下苦槠林和甜槠林凋落物年均磷含量由大到小顺序为N+P、CK、N处理。两林分凋落物的氮磷含量和年归还量不同处理间差异均不显著;不同处理间的苦槠林和甜槠林凋落物的氮磷比均无明显差异。【结论】氮沉降提高了苦槠和甜槠林凋落物产量,磷添加具有一定的增效作用,表明磷添加缓解了氮沉降引起的磷限制作用。  相似文献   

8.
以黔中久安生态茶园作为研究对象,采取野外调查和室内试验相结合的方法,对茶园中分布的5种不同林分下地表残存物的持水性能进行研究。研究表明:(1) 5种林分的地表残存物的蓄积量大小排列为马尾松林光皮桦林杉木林混交林茶林,残存物未分解层的蓄积量低于半分解层的蓄积量;(2)残存物的持水量、持水率与浸水时间均呈显著的对数相关性,残存物的持水量、持水率在前4 h的增加幅度较大,浸水4 h后增幅趋向平缓,不同林分残存物的持水量、持水率均表现为半分解层高于未分解层,而马尾松的持水量、持水率均为最高;(3)残存物的吸水速度与浸水时间呈显著指数相关性,残存物的吸水速度在前4 h有明显的变化,浸水4 h后变化趋向平缓,不同林分残存物的吸水速度表现为半分解层高于未分解层,而马尾松的吸水速度最快。  相似文献   

9.
不同林龄马尾松林枯落物储量及其持水性能   总被引:8,自引:2,他引:6  
对3种不同林龄阶段的马尾松林下枯落物储量及其持水特性进行分析.结果表明:枯落物储量中近熟林、中龄林、幼林分别为32.20、30.59、22.27 L/hm2;同一林分不同种类枯落物最大持水量差异明显;枯落物吸水速度随浸泡时间的延长而降低,30 min内吸水速度最快,枯落物吸水速度与其浸泡时间相关性极高;在充分吸水条件下,不同林龄不同层次、不同种类枯落物蒸发量有所差异,保水周期为7~10 d;林下枯落物最大持水能力随林龄的增大而增加,幼龄林、中龄林、近熟林分别为53.28、71.91、77.49 t/hm2,分别相当于水深为5.33、7.19、7.75 mm.  相似文献   

10.
以海南省屯昌县枫木林场3种林龄(幼龄林、中龄林、成熟林)的槟榔人工林为研究对象,探讨槟榔人工林地下部分0~100 cm土层中根系碳储量与土壤有机碳储量的分布特征.研究表明:0~100 cm土层中,槟榔人工林根系主要集中在表层(0~30 cm),且根系生物量随土层的加深而显著降低,表现为:成熟林(1244.26 g·m-3)>中龄林(993.26 g·m-3)>幼龄林(658.59 g·m-3);随林龄增长,根系碳储量表现为成熟林(6.23 t·hm-2)>中龄林(4.97 t·hm-2)>幼龄林(3.57 t·hm-2).不同林龄槟榔人工林的土壤有机碳(0~100 cm土层)分布表现为:随土层加深,土壤有机碳含量显著减少,不同林龄之间土壤有机碳存在差异,但不显著,其中,幼龄林的有机碳范围在2.64~21.65 g·kg-1之间,中龄林的含量范围为3.56~25.21 g·kg-1,成熟林的...  相似文献   

11.
【目的】对浙江省温州市森林生态系统碳储量进行研究,摸清区域森林碳储量现状,为区域碳汇功能的评价提供基础数据。【方法】基于温州市2018年森林资源年度监测的马尾松林、其他松林、杉木林、柳杉林、柏木林、硬阔林、针叶混交林、阔叶混交林、针阔混交林、毛竹林等10种主要类型的森林资源监测数据,以及30个调查样地的实测数据,用平均生物量转换因子法计算不同森林类型的碳储量和碳密度,同时采用Pearson相关分析法对不同森林生态系统各组分之间有机碳储量进行相关性分析。【结果】2018年,温州市森林生态系统碳储量为81.70 Tg, 其中乔木层18.46 Tg,灌草层1.55 Tg,凋落物层1.02 Tg和土壤层60.67 Tg,分别占生态系统碳储量的22.60%、1.89%、1.25%和74.26%。温州市的森林生态系统碳密度为123.81 t/hm2,其中乔木层27.98 t/hm2,灌草层2.34 t/hm2,凋落物层1.54 t/hm2和土壤层91.95 t/hm2,土壤有机碳库为植被有机碳库的2.88倍。乔木层和土壤层有机碳储量是温州市森林生态系统的主要碳库,占全部森林生态系统有机碳储量的96.86%。乔木层碳密度最大的是柏木林,达到46.06 t/hm2;阔叶混交林碳密度最低,为20.50 t/hm2;土壤层中,碳密度最大的为柳杉林,达到136.97 t/hm2;最小的为其他松木林,为49.38 t/hm2。不同林分生态系统碳密度有一定差异,其中柳杉林碳密度最大(185.42 t/hm2),最低的是马尾松林(83.34 t/hm2)。各组分碳储量相关性分析表明,乔木层与凋落物层碳储量呈显著正相关关系(P<0.05),土壤层碳储量与森林生态系统碳储量呈极显著相关关系 (P<0.01),说明土壤层对整个生态系统碳储量的贡献最大。其他各组分之间相关关系均达不到显著水平。【结论】温州市森林生态系统碳密度略高于浙江省平均水平,但是低于全国平均水平,因此可以通过合理的森林经营管理措施提高森林碳密度。  相似文献   

12.
【目的】掌握森林凋落物产量及组成的动态变化、凋落物养分归还量及凋落物分解特征,了解凋落物在森林生态系统养分循环中的作用。【方法】选择神农架巴山冷杉天然林和人工林,在样地内布置凋落物收集框和凋落物分解袋,通过1 a的连续观测,比较天然林和人工林凋落物产量及分解速率的差异。【结果】巴山冷杉天然林和人工林年凋落物总量分别为6 217.44和4 833.46 kg/hm2,天然林比人工林年凋落物总量高28.63%。凋落物中以落叶为主,天然林和人工林落叶产量分别占凋落物总量的55.24%和54.76%; 其次是落枝,分别占总量的22.18%和19.66%; 树皮及花果等其他组分含量相对较少,分别占总量的22.58%和25.58%。巴山冷杉林凋落模式为双峰型,分别在10月和次年6月具有明显高峰期,而在次年2月凋落量最小。天然林和人工林凋落物养分年归还量分别为77.84和54.47 kg/hm2,天然林比人工林凋落物年养分归还量高42.91%,5种大量元素年归还量大小顺序均为N>K>Ca>P>Mg。凋落物在初始阶段分解较快,天然林和人工林凋落物在最初2个月失重率分别达18.70%和11.35%。天然林和人工林凋落物分解常数分别为0.303和0.241,凋落物半衰期分别为1.70 a和2.57 a,而凋落物周转期分别为9.30 a和12.12 a。【结论】神农架巴山冷杉林凋落物产量较高,分解速率较慢,天然林凋落物对土壤的改良效果更好。  相似文献   

13.
基于森林资源二类清查数据资料,利用材积源生物量法和平均生物量法,计算新疆喀纳斯国家自然保护区内森林植被的碳储量及其空间分布。结果表明:保护区内森林植被碳储量为3.004 7 Tg,平均碳密度为49.58 Mg/hm2。不同植被类型碳储量从大到小排序为:乔木林地、灌木林地、疏林地、散生木,其中乔木林地碳储量占到森林植被总碳储量的90.18%,各乔木林地的平均碳密度为68.87 Mg/hm2。区域分布上,林分碳储量、碳密度的空间分布呈现出西南高东北低的趋势; 而保护区内成、过熟林分的碳储量共占乔木林地碳储量的79.89%,若对现有森林采取合理的经营管理,可增加其碳汇能力。  相似文献   

14.
甘肃兴隆山不同演替阶段典型森林群落的凋落物动态   总被引:1,自引:0,他引:1  
【目的】分析不同演替阶段典型森林群落凋落物的量、组成特征及月动态,了解兴隆山森林生态系统碳贮量和养分循环状况。【方法】采用凋落物收集器法,对甘肃兴隆山森林演替阶段的3种典型森林群落针阔混交林(山杨(Populus davidiana)-白桦(Betula platyphylla)-青杄(Picea wilosonii)林)和暗针叶林(青杄-灌木林和青杄-箭竹(Fargesia nitida)-苔藓林)的凋落物量、组分、月动态进行了观测与研究。【结果】3种典型森林群落年凋落物量5 534.48~7 951.25 kg/hm2,大小排序为:山杨-白桦-青杄林>青杄-灌木林>青杄-箭竹-苔藓林,针阔混交林高于暗针叶林; 凋落量随森林正向演替的进行而不断减少。山杨-白桦-青杄林中以叶(44.91%)、杂物(20.53%)、枝(15.86%)、果(14.74%)为主,青杄-灌木林中以叶(41.22%)、杂物(23.58%)、枝(18.53%)、果(13.32%)为主,青杄-箭竹-苔藓林中以叶(37.48%)、杂物(27.51%)、枝(22.35%)为主; 在叶凋落物中,针阔混交林以阔叶为主,暗针叶林则以针叶为主。3种典型森林群落凋落量动态模式均为双峰型,但最高峰和最低峰出现时期有所不同,针阔混交林最高峰在10月,最低峰在7月; 暗针叶林最高峰在4—5月,最低峰在8—9月。针叶凋落量动态模式呈双峰型,高峰期出现在4月和10月; 阔叶、杂物、枝、果和花凋落动态模式呈单峰型,阔叶最高峰在10月,杂物、枝和果在4—5月,花在5—6月; 树皮凋落动态无明显变化规律。【结论】森林演替对凋落量及其凋落物组成影响明显; 随森林由阳性落叶阔叶林向阴性针叶林方向演替,森林年凋落量逐渐变小; 阔叶凋落量所占比例逐渐减小,而针叶所占比例逐渐增加。  相似文献   

15.
【目的】根据福建省森林资源清查数据,估算天然乔木林的生物量碳库及其变化,并提出增汇策略,为天然林的固碳能力提升和科学经营管理提供依据。【方法】基于福建省2003—2018年4次森林资源清查数据,采用生物量转换因子连续函数法,结合主要林分组含碳率、根冠比,估算福建省天然乔木林碳储量变化和碳密度。【结果】福建省天然乔木林碳储量由2003年的156.11 Tg增加到2018年的248.68 Tg,年均增长率为3.15%;碳密度由2003年的47.30 Mg/hm2增加到2018年的76.24 Mg/hm2,年均增长1.93 Mg/hm2。天然乔木林碳储量以阔叶类树种(含针阔混交林)占主体,4个清查时期占比均超过70%,最高达86.47%。2003—2018年,天然乔木林幼龄林和中龄林面积占比58.78%~73.76%,碳储量占比50.72%~61.90%,面积和碳储量都以幼、中龄林为主,但占比均呈现明显下降趋势,且呈现碳储量占比明显低于面积占比的特征。天然乔木林碳密度随着林龄的增加呈现明显上升趋势,各林分的碳密度总体上以阔叶类高于针叶类。【结论】福建省天然乔木林碳储量呈较快增长趋势,碳密度不断提高,碳汇能力明显增强,随着天然林保护、生态修复的持续,现阶段以中幼龄林为主的天然乔木林已进入快速增长期,未来固碳潜力巨大。  相似文献   

16.
森林枯落物层和土壤层具有重要的生态水文功能.对天童地区常绿阔叶林不同演替阶段的研究表明:次生灌丛的枯落物层现存量(6.66 t·hm~(-2))栲树群落(6.43 t·hm~(-2))木荷群落(6.10 t·hm~(-2));栲树群落、木荷群落和次生灌丛群落枯落物层的最大持水量分别为10.58,11.29和13.88 t·hm~(-2);3种群落类型的有效拦蓄量分别为0.49,0.55和0.73 mm.在整个持水过程中,各群落中前2小时内各林分枯落物层持水作用较强.林下枯落物层持水量、吸水速率与浸水时间之间的关系式分别为Q=a lnt+b和V=kt~n.与栲树群落和木荷群落相比,次生灌丛在改善土壤物理性质和持水性能方面并不落后于这两种乔木林群落类型;研究期内,各群落类型0~30 cm土壤蓄水量在67.2~150.0 mm,不同演替阶段群落的土壤层持水能力远大于枯落物层.  相似文献   

17.
联合LiDAR和多光谱数据森林地上生物量反演研究   总被引:1,自引:0,他引:1  
【目的】森林地上生物量的准确估测对于实时掌握全球碳储量变化及应对气候变化有着重要的意义。组合多种遥感数据特征优选,分类建模反演森林地上生物量,是提高森林地上生物量精度的有效方法。【方法】以根河市大兴安岭生态观测站寒温带天然林为研究对象,以机载激光雷达(LiDAR)、Landsat8 OLI两种遥感数据源结合55块地面调查数据,采用偏最小二乘算法优化筛选变量,再以线性多元逐步回归和快速迭代特征选择的最近邻算法(KNN-FIFS)构建模型,在两种数据源的不同组合方式下进行森林地上生物量反演。【结果】①基于线性多元逐步回归模型下的单一LiDAR数据反演精度决定系数(R2)为 0.76,均方根误差(RMSE)为 21.78 t/hm2;单一Landsat8 OLI数据的反演精度R2为 0.24,RMSE为39.27 t/hm2;LiDAR和Landsat8 OLI联合反演精度R2 为 0.84,RMSE为18.16 t/hm2;②基于KNN-FIFS模型下的单一LiDAR数据反演精度R2为 0.74,RMSE为23.83 t/hm2;单一Landsat8 OLI数据的反演精度R2为0.60,RMSE为 29.63 t/hm2;LiDAR和Landsat8 OLI联合反演精度R2为0.80,RMSE为21.15 t/hm2。【结论】①特征优选支持下的3种组合方式中,LiDAR和Landsat8 OLI两种数据的组合在两种模型中反演精度均最高,其中线性多元逐步回归模型的反演精度最高,说明LiDAR和Landsat8 OLI数据组合,激光雷达与光学数据优势特征互补,协同反演可有效提高森林地上生物量的反演精度;②单一数据源反演森林地上生物量精度中,LiDAR数据比Landsat8 OLI数据在两种模型反演精度中均较高,这与LiDAR数据空间分辨高、可获得垂直结构特征参数有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号