首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Kondo resonance in a single-molecule transistor   总被引:4,自引:0,他引:4  
Liang W  Shores MP  Bockrath M  Long JR  Park H 《Nature》2002,417(6890):725-729
When an individual molecule, nanocrystal, nanotube or lithographically defined quantum dot is attached to metallic electrodes via tunnel barriers, electron transport is dominated by single-electron charging and energy-level quantization. As the coupling to the electrodes increases, higher-order tunnelling and correlated electron motion give rise to new phenomena, including the Kondo resonance. To date, all of the studies of Kondo phenomena in quantum dots have been performed on systems where precise control over the spin degrees of freedom is difficult. Molecules incorporating transition-metal atoms provide powerful new systems in this regard, because the spin and orbital degrees of freedom can be controlled through well-defined chemistry. Here we report the observation of the Kondo effect in single-molecule transistors, where an individual divanadium molecule serves as a spin impurity. We find that the Kondo resonance can be tuned reversibly using the gate voltage to alter the charge and spin state of the molecule. The resonance persists at temperatures up to 30 K and when the energy separation between the molecular state and the Fermi level of the metal exceeds 100 meV.  相似文献   

3.
Kondo physics in carbon nanotubes   总被引:3,自引:0,他引:3  
Nygård J  Cobden DH  Lindelof PE 《Nature》2000,408(6810):342-346
The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes are quantum wires that have been found to act as one-dimensional quantum dots, Luttinger liquids, proximity-induced superconductors and ballistic and diffusive one-dimensional metals. Here we report that electrically contacted single-walled carbon nanotubes can serve as powerful probes of Kondo physics, demonstrating the universality of the Kondo effect. Arising in the prototypical case from the interaction between a localized impurity magnetic moment and delocalized electrons in a metallic host, the Kondo effect has been used to explain enhanced low-temperature scattering from magnetic impurities in metals, and also occurs in transport through semiconductor quantum dots. The far greater tunability of dots (in our case, nanotubes) compared with atomic impurities renders new classes of Kondo-like effects accessible. Our nanotube devices differ from previous systems in which Kondo effects have been observed, in that they are one-dimensional quantum dots with three-dimensional metal (gold) reservoirs. This allows us to observe Kondo resonances for very large electron numbers (N) in the dot, and approaching the unitary limit (where the transmission reaches its maximum possible value). Moreover, we detect a previously unobserved Kondo effect, occurring for even values of N in a magnetic field.  相似文献   

4.
Progress in the fabrication of nanometre-scale electronic devices is opening new opportunities to uncover deeper aspects of the Kondo effect--a characteristic phenomenon in the physics of strongly correlated electrons. Artificial single-impurity Kondo systems have been realized in various nanostructures, including semiconductor quantum dots, carbon nanotubes and individual molecules. The Kondo effect is usually regarded as a spin-related phenomenon, namely the coherent exchange of the spin between a localized state and a Fermi sea of delocalized electrons. In principle, however, the role of the spin could be replaced by other degrees of freedom, such as an orbital quantum number. Here we show that the unique electronic structure of carbon nanotubes enables the observation of a purely orbital Kondo effect. We use a magnetic field to tune spin-polarized states into orbital degeneracy and conclude that the orbital quantum number is conserved during tunnelling. When orbital and spin degeneracies are present simultaneously, we observe a strongly enhanced Kondo effect, with a multiple splitting of the Kondo resonance at finite field and predicted to obey a so-called SU4 symmetry.  相似文献   

5.
利用双杂质的Anderson模型的哈密顿量,从理论上研究了耦合于铁磁电极的平行双量子点的自旋极化输运性质,并借助运动方程方法求解了哈密顿量.结果表明,该系统在费米能级处的Kondo共振峰与自旋极化强度和磁通量的取值有关.与此同时,在平行组态情况下,Kondo共振峰位置发生了偏移,而在反平行组态情况下,Kondo共振峰出现在相同位置处.这些现象使得这一双量子点系统的物理特性更加丰富,它们将有助于解释自旋电子学中的电子关联问题.  相似文献   

6.
Kondo effect is a very important many-body phenomenon in condensed mailer physics, which explains why the resistance increases as the temperature is lowered (usually 〈10 K) in dilute magnetic alloy, and why the conductance increases as temperature is decreased in quantum dots. This paper simply introduces equilihrium and nonequilibrium Kondo effects in quantum dots together with the Kondo effect in quantum dots with even number of electrons (when the singlet and triplet states are degenerate). Furthermore, Kondn effect in single aton/molecular transistorss is introduced, which indicates a new way in study Kondo effect.  相似文献   

7.
利用有效质量方法和变分原理,考虑内建电场效应和量子点(QD)的三维约束效应,研究类氢杂质对GaN/AlxGa1-xN量子点中激子态的影响.结果表明:量子点中心的类氢杂质使激子的结合能升高,基态能降低,QD系统的稳定性增强,发光波长红移.杂质位于量子点上界面时,激子的基态能最小,结合能最大,系统最稳定.随着杂质从量子点的上界面沿着Z轴移至下界面,激子基态能增大,结合能减小,带间发光蓝移.  相似文献   

8.
Roch N  Florens S  Bouchiat V  Wernsdorfer W  Balestro F 《Nature》2008,453(7195):633-637
Quantum criticality is the intriguing possibility offered by the laws of quantum mechanics when the wave function of a many-particle physical system is forced to evolve continuously between two distinct, competing ground states. This phenomenon, often related to a zero-temperature magnetic phase transition, is believed to govern many of the fascinating properties of strongly correlated systems such as heavy-fermion compounds or high-temperature superconductors. In contrast to bulk materials with very complex electronic structures, artificial nanoscale devices could offer a new and simpler means of understanding quantum phase transitions. Here we demonstrate this possibility in a single-molecule quantum dot, where a gate voltage induces a crossing of two different types of electron spin state (singlet and triplet) at zero magnetic field. The quantum dot is operated in the Kondo regime, where the electron spin on the quantum dot is partially screened by metallic electrodes. This strong electronic coupling between the quantum dot and the metallic contacts provides the strong electron correlations necessary to observe quantum critical behaviour. The quantum magnetic phase transition between two different Kondo regimes is achieved by tuning gate voltages and is fundamentally different from previously observed Kondo transitions in semiconductor and nanotube quantum dots. Our work may offer new directions in terms of control and tunability for molecular spintronics.  相似文献   

9.
利用有效质量方法和变分原理,考虑内建电场效应和量子点(QD)的三维约束效应,研究类氢杂质对GaN/AlxGa1-xN量子点中激子态的影响.结果表明:量子点中心的类氢杂质使激子的结合能升高,基态能降低,QD系统的稳定性增强,发光波长红移.杂质位于量子点上界面时,激子的基态能最小,结合能最大,系统最稳定.随着杂质从量子点的上界面沿着Z轴移至下界面,激子基态能增大,结合能减小,带间发光蓝移.  相似文献   

10.
在考虑内建电场效应和量子点(QD)的三维约束效应的情况下,运用变分方法研究了类氢施主杂质的位置对Ⅲ族氮化物量子点中束缚激子态的影响.结果表明:当类氢施主杂质位于量子点中心,InxGa1-xN/GaN量子点的高度和In含量大于临界值时,约束在QD中激子的基态能降低,激子态的稳定性增强,在较高的温度下观察到半导体量子点吸收谱中的激子峰,发光波长增大.而类氢施主杂质总是使束缚在GaN/AlxGa1-xN量子点中激子的基态能降低,杂质可能使在更高温度下观察到GaN/AlxGa1-xN量子点中的激子,发光波长增大.研究发现类氢施主杂质位于量子点上界面时,激子的基态能最小,系统最稳定;随着施主杂质下移,激子基态能增加,激子的解离温度下降,发光波长减小.  相似文献   

11.
在有效质量近似下,运用变分方法,考虑内建电场效应和量子点(QD)的三维约束效应的情况下,研究了类氢施主杂质在量子点中的位置对III族氮化物量子点中束缚激子结合能的影响。结果表明:当类氢施主杂质位于量子点中心时,对于InxGa1-xN/GaN量子点,量子点高度和In含量存在临界值,当参数大于临界值时,约束在QD中束缚激子的结合能升高,激子态的稳定性增强,提高了激子的离解温度,使人们能在较高的温度条件下观察到半导体量子点吸收谱中的激子峰。而类氢施主杂质总是使束缚在GaN/A lxGa1-xN量子点中激子的结合能升高,载流子被更强的约束在量子点中。说明对GaN/A lxGa1-xN量子点,杂质使人们能在更高温度下观察到量子点中的激子。类氢施主杂质位于量子点上界面时,束缚激子的结合能最大,系统最稳定;随着施主杂质下移,激子结合能减小,激子的离解温度下降。  相似文献   

12.
通过么正变换得到了平行双量子点有间库仑作用时的Fano—Anderson哈密顿量,并用格林函数运动方程的方法济南市出了与实验观测量密切相关的推迟和量子分布格林函数。借助于新得到的哈密顿量和格林函数,可以研究Kondo和Fano共振的关联效应。  相似文献   

13.
讨论了一个耦合于量子点的磁性杂质,当两边是铁磁性导线时量子点上电子的态密度Kondo峰的变化情况。用格林函数运动方程的方法和特定的自洽方法得到了态密度的解析表达式。杂质与量子点上电子的耦合使得原本简并的电子能级分裂。数值计算结果表明当两边的铁磁导线极化反平行时,态密度的Kondo峰几乎不随着磁性杂质方位角的变化而变化。当极化平行时,会出现3个Kondo峰,并且峰之间的间隔随着杂质的方位角的增大而增大。如果选取适当极化率的铁磁导线,由导线的铁磁性引起的Kondo峰的分裂可以被杂质的耦合作用抵?消掉。?  相似文献   

14.
The Kondo effect--a many-body phenomenon in condensed-matter physics involving the interaction between a localized spin and free electrons--was discovered in metals containing small amounts of magnetic impurities, although it is now recognized to be of fundamental importance in a wide class of correlated electron systems. In fabricated structures, the control of single, localized spins is of technological relevance for nanoscale electronics. Experiments have already demonstrated artificial realizations of isolated magnetic impurities at metallic surfaces, nanoscale magnets, controlled transitions between two-electron singlet and triplet states, and a tunable Kondo effect in semiconductor quantum dots. Here we report an unexpected Kondo effect in a few-electron quantum dot containing singlet and triplet spin states, whose energy difference can be tuned with a magnetic field. We observe the effect for an even number of electrons, when the singlet and triplet states are degenerate. The characteristic energy scale is much larger than in the ordinary spin-1/2 case.  相似文献   

15.
Cirac JI  Zoller P 《Nature》2000,404(6778):579-581
Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).  相似文献   

16.
Manoharan HC  Lutz CP  Eigler DM 《Nature》2000,403(6769):512-515
Image projection relies on classical wave mechanics and the use of natural or engineered structures such as lenses or resonant cavities. Well-known examples include the bending of light to create mirages in the atmosphere, and the focusing of sound by whispering galleries. However, the observation of analogous phenomena in condensed matter systems is a more recent development, facilitated by advances in nanofabrication. Here we report the projection of the electronic structure surrounding a magnetic Co atom to a remote location on the surface of a Cu crystal; electron partial waves scattered from the real Co atom are coherently refocused to form a spectral image or 'quantum mirage'. The focusing device is an elliptical quantum corral, assembled on the Cu surface. The corral acts as a quantum mechanical resonator, while the two-dimensional Cu surface-state electrons form the projection medium. When placed on the surface, Co atoms display a distinctive spectroscopic signature, known as the many-particle Kondo resonance, which arises from their magnetic moment. By positioning a Co atom at one focus of the ellipse, we detect a strong Kondo signature not only at the atom, but also at the empty focus. This behaviour contrasts with the usual spatially-decreasing response of an electron gas to a localized perturbation.  相似文献   

17.
The entanglement of quantum states is both a central concept in fundamental physics and a potential tool for realizing advanced materials and applications. The quantum superpositions underlying entanglement are at the heart of the intricate interplay of localized spin states and itinerant electronic states that gives rise to the Kondo effect in certain dilute magnetic alloys. In systems where the density of localized spin states is sufficiently high, they can no longer be treated as non-interacting; if they form a dense periodic array, a Kondo lattice may be established. Such a Kondo lattice gives rise to the emergence of charge carriers with enhanced effective masses, but the precise nature of the coherent Kondo state responsible for the generation of these heavy fermions remains highly debated. Here we use atomic-resolution tunnelling spectroscopy to investigate the low-energy excitations of a generic Kondo lattice system, YbRh(2)Si(2). We find that the hybridization of the conduction electrons with the localized 4f electrons results in a decrease in the tunnelling conductance at the Fermi energy. In addition, we observe unambiguously the crystal-field excitations of the Yb(3+) ions. A strongly temperature-dependent peak in the tunnelling conductance is attributed to the Fano resonance resulting from tunnelling into the coherent heavy-fermion states that emerge at low temperature. Taken together, these features reveal how quantum coherence develops in heavy 4f-electron Kondo lattices. Our results demonstrate the efficiency of real-space electronic structure imaging for the investigation of strong electronic correlations, specifically with respect to coherence phenomena, phase coexistence and quantum criticality.  相似文献   

18.
嵌入人造分子介观A-B环内的持续电流   总被引:3,自引:3,他引:0  
使用双杂质的Anderson模型的哈密顿,从理论上研究了一个嵌入串联耦合量子点的介观A-B环系统处在Kondo区时的基态性质,并用slave-boson平均场方法求解了哈密顿,结果表明,在这个系统中,宇称效应和复杂的电流。相位关系的出现反映了两个量子点可以相干耦合,因此,在未来的装置应用中,这个系统是很有潜力的。  相似文献   

19.
Milliron DJ  Hughes SM  Cui Y  Manna L  Li J  Wang LW  Alivisatos AP 《Nature》2004,430(6996):190-195
The development of colloidal quantum dots has led to practical applications of quantum confinement, such as in solution-processed solar cells, lasers and as biological labels. Further scientific and technological advances should be achievable if these colloidal quantum systems could be electronically coupled in a general way. For example, this was the case when it became possible to couple solid-state embedded quantum dots into quantum dot molecules. Similarly, the preparation of nanowires with linear alternating compositions--another form of coupled quantum dots--has led to the rapid development of single-nanowire light-emitting diodes and single-electron transistors. Current strategies to connect colloidal quantum dots use organic coupling agents, which suffer from limited control over coupling parameters and over the geometry and complexity of assemblies. Here we demonstrate a general approach for fabricating inorganically coupled colloidal quantum dots and rods, connected epitaxially at branched and linear junctions within single nanocrystals. We achieve control over branching and composition throughout the growth of nanocrystal heterostructures to independently tune the properties of each component and the nature of their interactions. Distinct dots and rods are coupled through potential barriers of tuneable height and width, and arranged in three-dimensional space at well-defined angles and distances. Such control allows investigation of potential applications ranging from quantum information processing to artificial photosynthesis.  相似文献   

20.
考虑纤锌矿结构氮化物半导体材料的单轴异性后,在有效质量近似下,利用变分法研究了无限高势垒近似下GaN,AlN和InN椭球形量子点中的杂质态,导出了杂质态结合能随量子点半径和椭球率变化的关系.数值计算结果发现,杂质态结合能随着量子点半径和椭球率的增加而减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号