首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 145 毫秒
1.
为了研究浇注PBX炸药装药爆炸壳体破片分布与炸药、壳体等的影响关系,采用典型浇注PBX炸药配方PBX-1装填不同壁厚的模拟弹,开展了模拟弹装药的水井爆炸破碎性试验。爆炸后破片回收率较好,对回收破片的数目分布、质量分布进行了统计分析,获得了破片分布与壁厚之间的规律,结合Payman模型进行了破碎性参数的分析计算,获得了破碎性参数与炸药装药之间的关系,并结合壳体破碎性对不同壁厚壳体炸药装药的有效杀伤距离进行了对比分析。  相似文献   

2.
自然破片战斗部装药与壳体之间的匹配关系对破片的形成起着至关重要的作用,破片的数量直接影响战斗部的毁伤威力。本文以某HMX基浇注PBX炸药作为杀爆战斗部主装药,为研究主装药与壳体材料及厚度之间的匹配关系,建立简化缩比战斗部有限元模型,选取30CrMnSi、4340钢、45钢三种材质作为壳体材料,并设置每种壳体的厚度分别为5 mm、5.5 mm、6 mm、6.5 mm、7 mm,采用AUTODYN软件中的Stochastic随机破坏模型对自然破片战斗部的爆炸过程进行模拟。结果表明,当主装药浇注PBX炸药爆炸时,壳体厚度为6.5 mm的4340钢作产生的有效破片数量最多,为325 个,并且有效破片占破片总数的比例较优,达到43.10%;其动能大于98 J的破片数量最多,为276 个。研究结果可以为杀爆战斗部的设计提供一定理论支撑。  相似文献   

3.
炸药殉爆实验和数值模拟   总被引:1,自引:0,他引:1  
为解决炸药殉爆实验可以给出炸药殉爆条件,但不能得到炸药爆炸过程细节的问题,进行了固黑铝(GHL)炸药殉爆实验,通过观测残留炸药和见证板变形,判断被发炸药爆炸情况. 并采用非线性有限元计算方法对炸药殉爆实验进行了数值模拟计算. 计算模型中主要考虑了主发炸药爆炸冲击波在空气中的传播及其对被发炸药的冲击起爆. 用欧拉法描述主发炸药及周围空气介质,用拉格朗日法描述被发炸药和见证板. 通过数值模拟计算,分析了炸药殉爆过程中,被发炸药爆轰波的成长历程. 结果表明:被发炸药起爆点位于药柱下端,爆轰波先向下传播,使底部炸药先爆炸,然后转为向上传播起爆整个炸药柱;炸药底端压力不高,远低于炸药C-J爆压,对见证板的破坏作用较小.  相似文献   

4.
针对破片斜冲击状态下引爆屏蔽固体炸药问题开展了研究。从理论上建立了与冲击角度相关的冲击压力计算方法。结合炸药起爆判据,可确定炸药冲击起爆的临界速度。采用Lee-Tarver点火增长模型和LS-DYNA仿真软件,对破片斜撞击屏蔽装药冲击起爆过程进行了数值模拟。利用升-降法确定了临界起爆速度,验证了理论模型的有效性;并分析了破片材料、入射角和靶板厚度对冲击起爆JO—9195固体炸药临界速度的影响。结果表明:理论计算和数值模拟误差不超过5.98%,吻合较好,表明所建立的理论计算方法是有效的。在相同条件下,钨合金破片相对于钢质和铜质破片临界起爆速度低;随着入射角和靶板厚度增加,冲击起爆的临界速度也随之增大。  相似文献   

5.
活性破片引爆屏蔽装药机理研究   总被引:6,自引:5,他引:1  
采用弹道实验对活性破片引爆屏蔽装药作用行为进行研究,且与同质量钨合金破片引爆能力进行对比,并基于AUTODYN-2D平台对破片冲击起爆屏蔽装药行为展开数值模拟研究,通过数值模拟与实验结果的对比得到活性破片引爆屏蔽装药机理.结果表明,10g活性破片在1 287m/s以上碰撞速度下,能可靠引爆设有10mm厚LY12硬铝或6mm厚A3钢面板的注装B炸药,而同质量钨合金破片在1 527m/s碰撞速度下,只能造成屏蔽装药碎裂而不能将其引爆.活性破片撞击金属面板后,自身在装药内部发生的剧烈化学反应是其引爆装药的主控机制,这显著降低了破片引爆屏蔽装药所需的动能.  相似文献   

6.
贾宪振 《科学技术与工程》2012,12(11):2528-2531
采用动力学计算程序AUTODYN对弹体侵彻混凝土过程进行了数值模拟,重点分析了弹体内部炸药所受压力的变化规律及装药与壳体之间的相互作用。数值模拟结果表明:弹体在侵彻过程中,装药前端主要受压缩作用,导致弹体前端的炸药产生明显的塑性应变;弹体尾部装药受到拉伸和压缩作用,并且装药和壳体尾部之间发生强烈碰撞,装药遭受明显的冲击作用。根据计算结果,侵彻型弹药设计应重点防护装药前端和尾部。  相似文献   

7.
为研究变壁厚壳体在内部爆炸加载下的破碎规律,设计了不同锥度的变壁厚壳体并分别从两端起爆,采用砂箱静爆法进行试验,回收了变壁厚壳体膨胀破裂生成的自然破片. 回收数据表明,从大端起爆时变壁厚壳体产生的破片数多于从小端起爆的情况,外表面锥度较大的壳体发生拉剪混合断裂的范围显著扩大. 采用Mott分布对破片数据进行拟合后,发现在相同结构下,从大端起爆时破片的特征质量更小. 基于Autodyn软件中的Stochastic随机破坏模型,对试验各工况进行了数值模拟,破片累积数分布结果与试验吻合较好,各工况之间的破片Mott特征质量规律与试验结果一致.   相似文献   

8.
为研究背板对破片冲击起爆屏蔽装药的影响,运用数值仿真方法分析了破片冲击起爆有无背板装药的情况. 数值仿真表明,由于背板对冲击波的反射作用使背板附近处冲击波压力幅值增加,从而使装药的临界起爆速度下降. 随着装药厚度的增加,背板对于装药的冲击起爆影响逐渐下降;背板材料对于反射冲击波幅值有所影响,但不同背板材料间装药临界起爆速度相差并不大.  相似文献   

9.
针对二次破片引爆车内弹药毁伤效能难评估问题,分析了基于热点学说的冲击引爆临界速度准则. 利用数值模拟方法,以反应度为引爆判断参数,进行了冲击引爆过程中炸药内部压力与状态分析,验证了热点引爆学说;得到了聚能装药撞击位置、破片尺寸、破片材料等参数对冲击引爆影响规律,直径相同时,柱形破片的临界起爆速度比球形破片低;聚能装药残余弹体或二次破片完全有可能引爆车体内弹药,从而导致严重的二次效应,钢质破片有效尺寸约14 cm、速度约1800 m/s,或者钨质破片有效尺寸约14 cm、速度约1500 m/s就能发生冲击引爆.   相似文献   

10.
对多元炸药装药的冲击起爆过程进行了数值模拟研究,得到了改变炸药装药层叠顺序后的压力时程曲线.通过分析比较发现:当起爆过程从高爆速炸药传入低爆速炸药时,压力波形过渡平稳,在低爆速炸药到达CJ点时会出现短暂的超压爆轰现象;当起爆过程从低爆速炸药传入高爆速炸药时,会出现回爆现象,压力波形出现双峰,这对于被驱动系统的二次加载是有价值的.  相似文献   

11.
将导弹战斗部简化成圆柱形带壳装药,利用有限元分析软件对不同弹目交汇情况下,对装药口径65 mm的EFP侵彻圆柱形带壳装药的过程进行数值模拟。模拟结果表明:EFP弹轴和圆柱形带壳装药的轴线在同一个平面上的情况下,当EFP着角为0°和30°时EFP能引爆圆柱壳内的B炸药;EFP弹轴垂直圆柱形带壳装药的轴线的情况下,接触点在装药半径1/2处时,EFP能引爆圆柱壳内的B炸药。EFP撞击圆柱形带壳装药的角度和位置,影响EFP对圆柱形带壳装药的引爆情况;研究结果对于设计新型防空反导武器战斗部具有参考意义。  相似文献   

12.
带尾翼爆炸成形弹丸成形机理初探   总被引:2,自引:0,他引:2  
爆炸成形弹丸装药采用3点起爆,运用爆轰波理论和数字模拟对3点起爆的爆轰机理和带尾翼爆炸成形弹丸的成形机理进行研究.研究结果表明:3点起爆后,爆轰波相互作用而形成超压.正是由于超压的形成,使得药型罩表面受到非均衡爆轰载荷作用,在有超压作用的药型罩的区域压合程度小,最终形成了带尾翼的爆炸成形弹丸.最后采用实验对数值模拟结果进行了验证.  相似文献   

13.
为提高整体式多爆炸成形弹丸(MEFP)毁伤能力,采用LS-DYNA数值仿真软件对不同炸药材料下整体式MEFP成形过程进行了仿真研究,并对采用B炸药的战斗部进行了地面静爆验证试验,试验结果和仿真结果吻合较好.研究表明随着炸药材料密度、爆速和爆压的增加,中心弹丸速度和长径比都得到大幅提高,中心弹丸侵彻能力增强;周边弹丸外形则由球形逐渐向长杆形发展,弹丸气动性减弱.炸药材料参数与毁伤元成形参数间呈抛物线变化规律,故可根据具体目标选择合适的炸药材料,以提高对目标的毁伤概率.  相似文献   

14.
针对装药壳体材料对爆破威力影响,对典型复合材料壳体、D6A钢壳体装药在空气中的爆炸破坏效应进行了数值分析及试验研究.研究表明,同样装药情况下,复合材料壳体装药爆炸产生的空气冲击波超压较钢壳体装药大;碳纤维复合壳体装药爆炸不会产生破片对远距离目标造成破坏;而D6A钢壳体装药爆炸产生的破片对远距离目标具有一定的杀伤效应.进行了2种材料壳体装药在空气中爆炸毁伤威力对比试验,试验超压测量结果与数值计算结果相一致.  相似文献   

15.
 研究了反应破片战斗部在爆轰驱动下反应破片的加载过程。利用AUTODYN-3D有限元计算软件,针对含能破片战斗部作用的特点,建立了破片抛射速度和主装药、隔爆层、破片等参数的数学模型,模拟了主炸药的起爆、爆轰波的传播、防护材料的作用及对破片的初始驱动过程;通过研究不同防护材料对爆炸冲击波的衰减特性,在满足反应破片抛射初速的前提下保证破片不破坏且有足够的抛射速度;对爆炸驱动过程进行理论分析和数值模拟,验证所设计的防护材料对反应破片的防护性能;对理论计算和数值模拟结果进行比较,并分析各影响因素,结论可为含能破片战斗部结构设计提供依据。  相似文献   

16.
针对活性破片终点毁伤威力问题,采用试验研究的方法,分析了活性破片的击穿能力、引燃能力和引爆能力. 结果表明,2.5 g活性破片在870 m/s以上碰撞速度条件下,能可靠击穿8 mm厚LY12硬铝,侵孔直径约为自身直径的1.6~2.0倍;10 g活性破片以大于800 m/s左右速度击穿10 mm厚LY12硬铝板后,可靠引燃航空煤油;10 g活性破片以大于960 m/s左右速度击穿6 mm厚A3钢板后,可靠引爆战斗部装药. 结合活性破片击穿能力可知,活性破片贯穿一定厚度靶板并达到其起爆阈值,就能引燃燃油或引爆装药.   相似文献   

17.
弹丸在侵彻自然土壤过程中很容易产生弹道失稳现象,对弹丸的侵彻与毁伤目的造成很大的影响,因此,分析弹丸侵彻自然土壤的弹道特性是十分重要的。本文通过56式枪弹和125mm弹侵彻自然土壤的试验,得到了弹丸侵彻土壤的弹道轨迹图像,并对其进行了分析研究。其中发现弹丸侵彻自然土壤时,会迅速失去姿态稳定,在土壤中产生较大空腔,并增加与土壤的接触面积,增大阻力,使弹丸速度迅速降低,影响弹丸的侵彻深度。同时,根据试验条件,利用LS-DYNA建立了计算仿真模型,获得了弹丸在侵彻过程中的姿态和运动特征。计算获得的弹丸姿态与弹道特征与试验图像比较吻合,对弹丸的速度、位移和负加速度做了分析研究,表明数值计算结果具有较高的可靠性,可以为弹丸侵彻土壤研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号