首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
石墨烯是一种具有独特二维晶体结构的新型碳纳米材料,具有优异的力学、电学、光学和热学性能,但是在溶剂中难以分散限制了其在很多领域的应用.功能化石墨烯提高了分散性,充分发挥了石墨烯的优良性能,在储能、生物医药、传感器和复合材料方面具有光明的应用前景.综述了石墨烯和功能化石墨烯的制备方法、优良性能及其各领域的应用.  相似文献   

2.
The increasing energy consumption and envi- ronmental concerns due to burning fossil fuel are key drivers for the development of effective energy storage systems based on innovative materials. Among these materials, graphene has emerged as one of the most promising due to its chemical, electrical, and mechanical properties. Heteroatom doping has been proven as an effective way to tailor the properties of graphene and render its potential use for energy storage devices. In this view, we review the recent developments in the synthesis and applications of heteroatom-doped graphene in supercapacitors and lithium ion batteries.  相似文献   

3.
MXene是一种新型的二维过渡金属碳化物或碳氮化物,具有类似石墨烯的二维结构.MXene因其独特的物理和化学特性,以及在储能、催化、电子与光电子等领域中的良好应用前景而受到广泛关注.介绍了MXene材料的制备、表征以及在锂离子电池、钠离子电池、锂硫电池和超级电容器等储能器件上的最新研究成果.最后,对MXene材料的未来发展和挑战进行了介绍.  相似文献   

4.
Porous graphene: Properties, preparation, and potential applications   总被引:1,自引:0,他引:1  
Graphene has recently emerged as an important and exciting material.Inspired by its outstanding properties,many researchers have extensively studied graphene-related materials both experimentally and theoretically.Porous graphene is a collection of graphene-related materials with nanopores in the plane.Porous graphene exhibits properties distinct from those of graphene,and it has widespread potential applications in various fields such as gas separation,hydrogen storage,DNA sequencing,and supercapacitors.In this review,we summarize recent progress in studies of the properties,preparation,and potential applications of porous graphene,and show that porous graphene is a promising material with great potential for future development.  相似文献   

5.
Graphene-based materials have been full of vigor and tremendous potentiality for application in supercapacitors due to its variety of unique properties such as electronic properties, simple synthesis, etc. In developing new macroscopic nanostructured graphene materials for supercapacitors, considerable efforts have been made by the scientist including our research group. In this account, we describe our development of the construction of the assembled graphene especially fiber and foam, which have great potential in addressing the challenges in the synthesis of graphene-based electrode materials for supercapacitors. As the supercapacitors are reviewed in this article, they are accordant with the rapid development of flexible, lightweight, and wearable-electronic devices, overcoming the major some drawbacks of conventional bulk supercapacitors. We hope that this summary will benefit the further research of graphene-based materials for the applications in electrochemical energy storage devices and beyond.  相似文献   

6.
Graphene attracts more and more scientists and researchers owing to its superior electronic,thermal,and mechanical properties.For material scientists,graphene is a kind of versatile building blocks,and considerable progress has been made in recent years.Graphene-based hybrid materials have been prepared by incorporating inorganic species and/or cross-linking of organic species through covalent and/or noncovalent interactions.The graphene-based hybrid materials show improved or excellent performance in various fields.In this review,we summarize the synthesis of graphene and graphene-based hybrid materials,and their applications in energy storage and conversion.  相似文献   

7.
As promising candidates of power resources, electrochemical energy storage (EES) devices have drawn more and more attention due to their ease of use, environmental friendliness, and high transformation efficiency. The performances of EES devices, such as lithium-ion batteries, sodium-ion batteries, and supercapacitors, depend largely on the inherent properties of electrode materials. On account of the outstanding properties of graphene, a lot of studies have been carried out on two-dimensional (2D) materials. Over the past few years, a new exfoliation method has been utilized to successfully prepare a new family of 2D transition metal carbides, nitrides, and carbonitrides, termed MXene, from layered precursors. Moreover, some unique EES properties of MXene have been discovered. With rapid research progress on this field, a timely account about the applications of MXene in the EES fields is highly necessary. In this article, the research progress on the preparation, electrochemical performance, and mechanism analysis of MXene is summarized and discussed. We also propose some personal prospects for the further development of this field.  相似文献   

8.
随着能源消耗的日渐增长,寻找低成本、环保、寿命长的储能设备迫在眉睫。在超级电容器领域,石墨烯电极材料以其高比电容、优异倍率性能、良好导电性等优势而受到广泛关注。对石墨烯材料的制备方法、电化学性能及相关机制做了总结,目的是研究不同结构的石墨烯材料对超级电容器性能的影响,并找到性能较为优异的石墨烯基材料。最后分析了石墨烯基电极材料发展中存在的问题,并对其研究前景进行了展望。  相似文献   

9.
Recent scientific interests reveal that graphene, with its flexibility, chemical stability, thermal conductivity,unique electronic band structure and optical transmittance, has emerged as the novel supporting material for nanocomposites for various applications. Research interests have flourished regarding decoration of conventional materials with modified graphene for achieving better optical properties. More concern is given for achieving improved photoresponse with graphene as the supporting material. The giant electron mobility and transparency of graphene enables the photo-induced electron transfer in the hybrid material, resulting in enhanced behaviour. Graphene oxide is able to effectively convert near infrared energy into heat, potentially acting as a photo-thermal switch. They act as potential candidates for photo-catalysts, sensors, photo-current switching,photo-detectors and other optical applications. In this review, we summarized the recent developments on fabrication and properties of graphene based photoresponsive materials.  相似文献   

10.
Preparation and characterization of graphene oxide paper   总被引:7,自引:0,他引:7  
Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range, and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.  相似文献   

11.
Graphene has unique physical properties,and a variety of proof-of-concept devices based on graphene have been demonstated.A prerequisite for the application of graphene is its production in a controlled manner because the number of graphene layers and the defects in these layers significantly influence transport properties.In this paper,we briefly review our recent work on the controlled synthesis of graphene and graphene-based composites,the development of methods to characterize graphene layers,and the use of graphene in clean energy applications and for rapid DNA sequencing.For example,we have used Auger electron spectroscopy to characterize the number and structure of graphene layers,produced single-layer graphene over a whole Ni film substrate,synthesized well-dispersed reduced graphene oxide that was uniformly grafted with unique gold nanodots,and fabricated graphene nanoscrolls.We have also explored applications of graphene in organic solar cells and direct,ultrafast DNA sequencing.Finally,we address the challenges that graphene still face in its synthesis and clean energy and biological sensing applications.  相似文献   

12.
储能是实现清洁能源替代传统化石能源的关键,其核心是开发高效储能材料,其中稀土材料由于独特的电子结构,在电化学储能各领域显示出了巨大应用的前景.主要综述了稀土在铅酸蓄电池、镍氢电池、固体氧化物燃料电池(SOFC)、锂离子电池、超级电容器和锂硫电池中的研究和应用现状,期望发展系统功能材料合成和组装技术,拓展其在未来储能中的应用.  相似文献   

13.
低维材料因其原子级的物理尺寸而拥有独特的物理化学性质. 以石墨烯为代表的二维材料具有优越的光学、电学、力学及热学性能,在电子、光电、能源、催化等领域具有巨大的应用潜力. 大尺寸、高质量的单晶材料是大规模高端器件的应用基础. 为此,研究者们致力于实现晶圆级二维单晶材料的制造研究. 利用化学气相沉积法(CVD)制备二维材料具有薄膜质量高、可控性强、均匀性好等优点,因此,CVD成为制备高质量二维单晶材料的首选. 文章从二维导电石墨烯、绝缘氮化硼和半导体过渡金属硫族化合物入手,总结了近年来利用CVD技术外延制造二维单晶薄膜的研究进展,讨论了大面积二维单晶材料的制备策略与生长机理,指出了目前存在的问题,对未来高质量二维单晶薄膜的制备方法进行了展望. 该综述为进一步推动二维单晶材料的规模化应用提供借鉴.  相似文献   

14.
Hydrogen is a promising energy carrier that can potentially facilitate a transition from fossil fuels to sustainable energy sources without producing harmful by-products. Prior to realizing a hydrogen economy, however, viable hydrogen storage materials must be developed. Physical adsorption in porous solids provides an opportunity for hydrogen storage under low-stringency conditions. Physically adsorbed hydrogen molecules are weakly bound to a surface and, hence, are easily released. Among the various surface candidates, porous carbons appear to provide efficient hydrogen storage, with the advantages that porous carbon is relatively low-cost to produce and is easily prepared. In this review, we summarize the preparation methods, pore characteristics, and hydrogen storage capacities of representative nanoporous carbons, including activated carbons, zeolite-templated carbon, and carbide-derived carbon. We focus particularly on a series of nanoporous carbons developed recently: metal–organic framework-derived carbons, which exhibit promising properties for use in hydrogen storage applications.  相似文献   

15.
The ever-increasing environmental problems and energy challenges have called urgent demand for utilizing green, ef-ficient, and sustainable energy, thus promoting the develop-ment of new technologies associated with energy storage and conversion systems. Amongst a wealth of energy storage devices, Li/Na/K/Zn/Mg ion batteries, metal-air batteries, and lithium–sulfur/all-solid-state batteries together with su-percapacitors as advanced power sources have attracted con-siderable interest due to their conspicuous merits of high en-ergy density, long cycle life, and good rate capability. In the energy conversion systems, solar cells and fuel cells can be considered as mainstream renewable energy resources once their manufacturing cost has decreased to an affordable level. However, the developments of advanced power sources de-pend critically on advances in materials innovation. There-fore, to promote the practical applications of these promising systems, developing high-performance electrode materials has been taken into the center stage in current research areas from chemistry, physics, and materials science fields.  相似文献   

16.
 石墨烯是一种单原子层厚度的二维平面碳纳米材料,具有超高的载流子迁移率、高热导率等特性。本文综述目前石墨烯在强化传热领域的研究进展,包括石墨烯热导率的测试方法,以及石墨烯在纳米流体、热界面材料、高导热复合高分子材料方面的应用,并对未来石墨烯的研究方向进行展望。  相似文献   

17.
近年来,纳米石墨烯在摩擦学领域引起了一番新的热潮,纳米石墨烯因具有独特的物化性能、超薄层间结构和优良的自润滑性能,将其作为润滑添加剂能够显著提高机体的摩擦学性能。文中综述了纳米石墨烯作为固体润滑剂、水基润滑添加剂和油基润滑添加剂以及与其他纳米粒子的复合材料作为润滑添加剂的研究进展,归纳总结了石墨烯的保护层薄膜、低表面能、自润滑性能、复合材料共同作用等减摩抗磨机理;指出了纳米石墨烯存在的问题,如不同添加量的石墨烯对溶液的抗磨减摩影响较大,石墨烯的层数和结构都是影响机体抗磨减摩的重要因素,并对今后石墨烯的研究方向进行了展望。  相似文献   

18.
Nanostructured semiconductors have been researched intensively for energy conversion and storage applications in recent decades. Despite of tremendous find- ings and achievements, the performance of the devices resulted from the nanomaterials in terms of energy conversion efficiency and storage capacity needs further improvement to become economically viable for subsequent commercializa- tion. Hydrogenation is a simple, efficient, and cost-effective way for tailoring the electronic and morphological properties of the nanostructured materials. This work reviews a series of hydrogenated nanostructured materials was produced by the hydrogenation of a wide range of nanomaterials. These materials with improved inherent conductivity and changed characteristic lattice structure possess much enhanced per- formance for energy conversion application, e.g., photo- electrocatalytic production of hydrogen, and energy storage applications, e.g., lithium-ion batteries and supercapacitors. The hydrogenation mechanisms as well as resultant properties responsible for the efficiency improvement are explored in details. This work provides guidance for researchers to use the hydrogenation technology to design functional materials.  相似文献   

19.
The properties of γ-ray-reduced graphene oxide samples (GRGOs) were compared with those of hydrazine hydrate-reduced graphene oxide (HRGO). Fourier transform infrared spectroscopy, X-ray diffractometry, Raman spectroscopy, Brunauer–Emmett–Teller surface area analysis, thermogravimetric analysis, electrometry, and cyclic voltammetry were carried out to verify the reduction process, structural changes, and defects of the samples, as well as to measure their thermal, electrical, and electrochemical properties. Irradiation with γ-rays distorted the structure of GRGOs and generated massive defects through the extensive formation of new smaller sp2-hybridized domains compared with those of HRGO. The thermal stability of GRGOs was higher than that of HRGO, indicating the highly efficient removal of thermally-labile oxygen species by γ-rays. RRGO prepared at 80 kGy showed a pseudocapacitive behavior comparable with the electrical double-layer capacitance behavior of HRGO. Interestingly, the specific capacitance of GRGO was enhanced by nearly three times compared with that of HRGO. These results reflect the advantages of radiation reduction in energy storage applications.  相似文献   

20.
石墨烯领域发展态势及对策建议   总被引:1,自引:0,他引:1  
李明珍 《科技与经济》2014,27(1):101-105
石墨烯是目前材料科学、物理、化学等领域最热门的研究主题之一。由于集优异的电学、力学、光学、化学等特性于一身,在半导体、动力电池、新一代显示器等领域具有巨大的应用潜力。借助文献和专利分析等手段,对国际石墨烯研发态势和进展进行了分析,提出了浙江省石墨烯领域发展的对策和建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号