首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
胎面侧向自激振动是轮胎多边形磨损现象产生的根源.对后悬架四自由度自激振动模型进行Simulink仿真,验证了轮胎侧向振动是一种硬自激振动.对系统自激振动状态影响较大的敏感参数主要有轮胎橡胶刚度及阻尼系数、垂向载荷、接地附着系数、接地块质量、轮胎前束角以及外倾角.对敏感参数的灵敏度计算确定了影响分岔车速的参数灵敏度排序.最后,给出了抑制轮胎侧向自激振动的主要有效措施:增大胎面—路面附着系数及减小轮胎前束角可以减小产生自激振动的车速范围或者将其从正常行驶车速范围移除,从而减少胎面磨损,延长轮胎使用寿命.  相似文献   

2.
基于胎面侧向振动的轮胎多边形磨损机理分析   总被引:2,自引:1,他引:1  
考虑轮胎接地磨擦的非线性特性,采用动态LuGre摩擦模型,建立基于胎面侧向振动的轮胎多边形动力学模型,并对系统的稳定性进行了分析,指出轮胎的自激振动是一种由系统Hopf分岔引起的稳定周期振动现象.研究表明轮胎多边形磨损是一种典型的非线性自激振动现象,其发生与胎面的侧向振动有关,轮胎多边形磨损的边数近似等于胎面的侧向振动频率与车轮转动频率之比,并通过仿真得到了能够引起胎面自激振动的车速和轮胎前束角范围.结果表明所建模型能够很好地解释轮胎多边形磨损的形成机理,为减小或消除轮胎的自激振动提供了理论依据.  相似文献   

3.
考虑悬架的垂向特性,在Abaqus中建立车身-悬架-轮胎-路面系统有限元模型,实现了轮胎在路面上动态滚动,以及在Virtual.Lab中建立了轮胎声学边界元模型,仿真计算了轮胎在动态滚动过程中的结构振动噪声.结果表明:胎面花纹块与路面的周期碰撞是轮胎结构振动噪声的主要噪声源,并由整车轮胎噪声实验得到了对比验证.  相似文献   

4.
多边形磨损是汽车轮胎磨损研究中的新课题,具有重要的理论价值和研究意义.考虑轮胎接地磨擦的非线性特性,建立了基于LuGre摩擦模型的轮胎侧、垂向力耦合的动力学模型.根据自激振动理论,得出轮胎多边形磨损与胎面的侧向振动有关,磨损边数近似等于胎面的侧向振动频率与车轮滚动频率之比,并通过仿真得到了能够引起胎面自激振动的车速和车轮前束角范围.结果表明,所建模型能很好地解释轮胎多边形磨损的形成机理,为减小或消除轮胎的自激振动提供了理论依据.  相似文献   

5.
王伟 《科技信息》2013,(15):303-304,349
柴油机在工程机械中有着广泛的应用,但是其振动噪声大也是最为严重的缺陷,本文介绍了某工程车辆动力总成悬置系统模型的建立方法,通过对该系统的振动动能分析和振动势能进行了数学分析,建立了相应的惯量矩阵方程和刚度矩阵方程。并对悬置系统设计的重要参数之一的质心位置,利用三点支撑法进行了测定,以便对悬置系统振动情况进行优化。  相似文献   

6.
轮胎接触面对车-简支梁桥耦合振动的影响   总被引:1,自引:0,他引:1  
现有分析车一桥耦合振动的研究中,都假设移动车辆与路面的接触关系为点接触.事实上,轮胎与路面是通过面接触的,通过建立新的三维车轮模型,分析了面接触对车一桥耦合振动的影响,将车轮与路面的接触面简化为长方形,通过接触面间的位移协调条件和力相互作用建立车一桥耦合振动方程,同时还研究了接触面对车一桥耦合振动的影响。  相似文献   

7.
建立轮胎-悬架-车身系统的考虑时间延迟的轮胎多边形磨损动力学模型,探讨基于自激励振动理论的轮胎多边形磨损现象.研究表明,轮胎多边形磨损是一种典型的非线性自激励振动,不同车型、不同轮胎磨损状况下,系统的自激励振动频率不同,常见频率区间为100~400 Hz;轮胎周向多边形磨损现象即由于自激励振动出现在特定的车速区间;轮胎多边形磨损的边数等于自激励振动系统的固有频率与车轮转动频率之比;轮胎在特定频段的固有频率对自激励系统振动有很大影响,扭杆梁悬架系统的垂向振动特性对轮胎多边形磨损影响很小.  相似文献   

8.
为了研究湿滑路面上汽车轮胎滑水性能影响机理,基于有限元软件ABAQUS,分别建立了轮胎模型和轮胎滑水模型,对滑水模型进行试验验证和静态分析。基于轮胎运动边界方程和水流控制方程,对轮胎滑水性能的影响因素进行仿真分析。仿真结果表明:轮胎临界滑水速度随着轮胎气压、负载和花纹沟槽深度的增大而增加;随着路面水膜厚度增加,轮胎临界滑水速度减小。探究各种因素对轮胎滑水性能的影响,为轮胎的开发和设计提供参考。  相似文献   

9.
现有车-桥耦合振动分析中车辆模型不能精确考虑车辆动力特性和柔性轮胎对车桥耦合振动响应的影响.为了进一步研究充气轮胎胎压对车-桥耦合振动的影响,基于LS-DYNA程序,采用线弹性橡胶材料模拟轮胎并定义轮胎内气压,结合常用重载三轴汽车的结构参数,运用弹簧阻尼单元及梁、壳单元模拟车辆悬架系统的动力特性,建立可分析车轮气压的三维车辆模型;并基于实桥试验结果及响应面法得到高精度有限元桥梁模型;通过显式求解程序LS-DYNA内置的接触算法,将车辆子系统和桥梁子系统联立耦合起来,形成显式的车-桥耦合振动分析模型.计算结果与实测结果对比分析验证了该方法的正确性,并分析了轮胎胎压对桥梁振动的影响.  相似文献   

10.
动平衡是检测轮胎质量的重要技术指标.研究了载重轮胎动平衡检测设备的核心技术,即系统参数标定算法.针对轮胎一轮辋.主轴动力学系统的复影响系数方程,提出了基于最小二乘的标定算法来解算影响系数.验证实验中在轮辋上安装砝码,来检测参数标定精度,其质量计算误差在±1%的范围内.与传统的参数标定方法相比,本算法能够更有效地消除系统误差的影响,求解得出的影响系数方程能够更准确地表征轮胎不平衡质量与主轴支承振动信号间的对应关系.  相似文献   

11.
碎石沥青玛蹄脂路面的声振特性实验初探   总被引:2,自引:0,他引:2  
为研究碎石沥青玛蹄脂 (SMA)路面的吸声和降振特性 ,分别测试SMA路面和一般沥青路面等多种试件的吸声系数和路面 /轮胎系统的振动性能 .实验结果表明 ,和普通沥青路面试件相比 ,SMA路面试样不但在吸声降噪性能方面有一定程度的优势 ,而且在改善轮胎 /路面系统的振动性能方面也有较显著的优势 .分析表明SMA路面具有较好的降低交通噪声的能力  相似文献   

12.
利用ABAQUS软件建立了考虑声固耦合作用的光面胎滚动有限元模型,并对其进行滚动工况下Mises应力、接地性能以及振动模态等力学性能分析。从动力学分析结果中提取光面胎结构有限元模型的表面振动加速度,导入LMS Virtual.Lab Acoustics软件,采用声学边界元法分析光面胎滚动噪声;探讨了接地印痕、载荷、胎压和下沉量之间的关系,并对近场噪声仿真值与实验测量值进行了比较。研究结果表明:考虑声固耦合作用的光面胎Mises应力、接地压力、接地印痕呈对称分布,接触印痕、载荷、胎压随下沉量的增加而增大;考虑声固耦合的光面胎滚动噪声主要分布于50~375 Hz低频段,且内胎气体在滚动工况下产生了稳定声压(8 dB(A))。  相似文献   

13.
为了给低噪沥青路面的设计与施工提供参考,研究了沥青路面的集料针片状颗粒含量对行车振动噪声的影响.通过理论分析、现场噪声测试和离散元模拟计算,论证了行车振动噪声与轮地接触压力的关系,提出利用轮地接触压力的波动性评价行车振动噪声的方法.采用离散元颗粒流软件PFC3D构建了4种不同针片状颗粒含量的沥青路面模型以及车轮模型,分别模拟车轮在不同车速下在这4种路面上的运动过程,并计算轮地接触压力,分析其波动性,进而评价行车振动噪声.研究结果表明,当针片状颗粒含量为0、10%和15%时,针片状颗粒含量与行车振动噪声之间没有明显的相关性;当针片状颗粒含量为20%时,其行车振动噪声要明显高于低针片状颗粒含量的路面.因此针片状颗粒含量过大,不仅会影响集料的施工和易性、降低混凝土强度等,还会导致较高的行车振动噪声.  相似文献   

14.
微表处路面高噪声的问题极大地限制了微表处路面技术的推广与发展。以"轮胎驱动式路面功能加速加载试验系统"为基础试验平台,自制搭建了一套用于测定室内微表处振动加速度及噪声的小型装置。通过该试验平台探究了级配、外加剂对微表处路面噪声的影响。结果表明:调整集料级配,添加5 mm 0. 2%玻璃纤维或80目1. 5%橡胶颗粒均能起到降噪效果;但调整集料级配对微表处路面噪声治理更具显著成效。  相似文献   

15.
为研究气动升力激励对汽车悬架性能的影响,在Simulink建立滤波白噪声路面输入模型和气动升力激励模型。在不同车速下,分别对考虑气动升力激励和不考虑气动升力激励的振动模型进行仿真,对比分析两种情况下的车辆悬架系统评价指标。结果表明:考虑气动升力激励的车身加速度和不考虑气动升力激励时的差异很小;低速时,气动升力激励引起的悬架行程差异较小,高速时,气动升力激励会明显增大悬架动行程;低速时,气动升力激励引起的轮胎动载荷差异不明显,高速时,气动升力激励会使得轮胎动载荷略微增大。  相似文献   

16.
通过分析橡胶粉降噪微表处减振降噪机理,基于正交试验对橡胶粉降噪微表处路用性能影响因素进行研究,对橡胶粉降噪微表处的配合比进行优化。研究表明:微表处路面添加橡胶粉后可以通过增加阻尼的方式来减弱轮胎在路面上的振动,而且混合料表面形成多孔吸声结构来降低噪声,同时起到减振降噪的作用;改性乳化沥青配合比、橡胶粉掺量以及橡胶粉粒径均会不同程度地影响橡胶粉降噪微表处的抗车辙性能、抗水损性能以及降噪性能;根据各因素对各技术指标的贡献顺序对橡胶粉降噪微表处进行了配合比的优化:级配为①类型均匀级配,其中,改性乳化沥青用量为11.5%,外加水量为3%,水性环氧树脂掺量为10%,另外,橡胶粉的细度选择0.250 mm,掺量为3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号