首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.
将油岩通过酸处理和低温灰化,获得高纯度的有机质和矿物质,利用程序升温装置与二氧化硫在线分析仪,在升温速率为5℃/min的条件下,分别研究了燃烧过程中茂名油页岩及其有机质与矿物质释放二氧化硫的本征动力学。  相似文献   

2.
油页岩灰分是油页岩综合利用的主要物质之一。对石长沟油页岩进行马弗炉燃烧实验,制备不同燃烧终温(200~800 ℃)的油页岩灰分;并借助多种实验仪器研究不同温度燃烧下的灰分构成成分、结构特征及微观孔隙演化过程。结果表明:油页岩有机质以脂肪族为主;燃烧过程中,各有机元素(N、S、C、H、O)含量呈现下降趋势,自由水析出,结构水脱离,碳酸盐和脂肪族会逐渐分解,在800 ℃高温时,C完全转化为CO2逸出;灰分的构成成分主要为二氧化硅和碳酸盐,孔隙以微孔和中孔为主,随着燃烧温度升高,中孔数量增加,比表面积和分形维度先增后减,峰值均在400 ℃处。本次研究结果为分析石长沟油页岩不同燃烧温度下灰分的物理状态提供了理论基础,对了解石长沟油页岩的燃烧特性具有一定的借鉴意义。  相似文献   

3.
在对国内外城市生活垃圾组成及变化规律研究的基础上,配制了能代表我国城市生活垃圾组成特性的模化城市生活垃圾(Model Municipal Solid Waste,MMSW)。采用TGA—FTIR联用技术模拟燃烧、热解工况,研究了不同升温速率、不同中途恒温时间等条件下MMSW的氯释放特性。研究结果表明:MMSW的氯起始释放温度和氯释放终止温度与MMSW热处理的气氛、升温速率均有关系,氯起始释放温度在350~420℃范围内变化;在燃烧、热解等条件下,MMSW中的氯基本以HCl气态形式释放,起始释放温度在燃烧条件下要比无氧条件(热解)下要低20~30℃;升温速率越快,氯起始释放温度越高,氯完全释放的时间间隔越短。研究还表明,在380~420℃恒温时间越长,越有利于MMSW中氯的完全释放。  相似文献   

4.
在空气气氛下利用TGA/DSC1型同步热分析仪进行了桦甸油页岩半焦与玉米秸秆的混烧实验。研究了升温速率和质量比对燃烧特性参数的影响;并与单一油页岩半焦的燃烧特性进行比较。结果表明:混合样品的挥发分初析温度和着火温度远低于油页岩半焦,但略高于玉米秸秆;随着升温速率的提高,混合样品挥发分初析温度和着火温度逐渐提高。升温速率一定时,随着玉米秸秆质量比增大,燃烧过程呈现向低温区迁移的趋势;并且低温段曲线峰值高,挥发分释放剧烈,改善了混合物燃烧特性。玉米秸秆质量比大于10%时,混合样品的各项燃烧特性指标也增大。采用相互影响指数RMS和MR值评价混烧过程的相互影响,研究表明相互影响作用主要发生在第二、第三和第四阶段,第二、第三阶段为有利影响,第四阶段为不利影响。当半焦与玉米秸秆质量比为7:3时,其相互影响最大且均为有利影响。应用KAS模型,分析了混合物燃烧动力学,结果表明,随着反应进行,活化能总体呈上升趋势,与TG-DTG曲线变化规律一致。研究结果可以为油页岩半焦与玉米秸秆的高效燃烧提供参考。  相似文献   

5.
利用压力热重仪对抚顺和茂名页岩颗粒进行了快速燃烧实验,以此来模拟油页岩在沸腾炉内的燃烧过程。考察了粒径、温度、压力等因素对燃烧过程的影响.所用的样品粒径为3~11mm,燃烧温度700~900℃,压力为0.1~0.9MPa,利用总包一级燃烧反应模型对实验数据进行了处理,得到了较为满意的结果。  相似文献   

6.
将抚顺和茂名两种油页岩样品(铝甑含油率分别为9.9%与8.8%),用HCl及HF处理以除去矿物质,得到含灰3.7%与6.5%的有机质;另又用H_2O_2处理以除去有机质,得到含有机碳小于2.5%的矿物质。校核两者的分析结果,从而确定两种油页岩有机质的含量及其元素组成。从矿物质的红外光谱确认了石英、高岭石、伊利石与蒙脱石为其主要成分。计算出油页岩中粘土矿物的结构水含量约为5%。根据51个油页岩样品的分析数据,提出了从工业分析数据计算有机质含量的经验公式:有机质含量=1-(1.07A+CO_2+0.55S_p);式中A为灰分、CO_2为碳酸盐二氧化碳,S_p为硫铁矿硫。根据有机质的元素分析,两种油页岩均属于高氢碳比、低氧碳比类型。  相似文献   

7.
矿物质对SO2释放的影响及钙的固硫机理   总被引:2,自引:0,他引:2  
为了开发高效燃烧脱硫技术,通过热质量/选出气体分析实验研究了煤中矿物质对煤燃烧中SO2释放的影响以及钙的固硫机理,研究结果表明:脱灰后SO2的释放曲线由原煤的双峰变成单峰;Ca的添加能够促进煤中硫在低温下释放,但不同形态钙的固硫效果不同;脱灰煤中添加CaSO4后SO2的释放曲线又恢复为双峰,CaSO4没有固硫效果;添加CaCO3和CaO后SO2的生成会有明显减少,且CaO的固硫效果要比CaCO3显著.基于这个实验结果,提出了程序升温燃烧条件下煤中的矿物质对SO2释放影响所遵循的吸附-解吸附机理,以及钙基固硫剂固硫所遵循的吸附-解吸附/氧化机理。  相似文献   

8.
传热Biot数的大小是判别颗粒内部温度均匀性的依据,计算了颗粒油页岩在流化床燃烧条件下脱挥发分过程和半焦燃烧过程的Biot数。结果表明,脱挥发分过程中颗粒油页岩内部存在着较大的温度梯度,半焦燃烧过程的Biot数小于0.1,可将颗粒视为等温.讨论了相关的动力学处理方法。  相似文献   

9.
以内蒙古锡林郭勒盟褐煤为原料,借助于煤热解制备出民用洁净低硫褐煤半焦,考察了热解温度、升温速率、恒温时间及煤粒粒径等工艺条件对所制备的褐煤半焦中总硫、有机硫及无机硫含量的影响。实验结果表明:在500~800℃热解温度范围内,褐煤半焦中总硫含量随着热解温度的增加呈现先减小后增加的趋势,热解温度为700℃时褐煤半焦中总硫质量分数达到最低值(0.98%);热解升温速率越慢,越有利于褐煤中硫的释放,升温速率为10℃/min时褐煤中硫释放程度最大(脱硫率为67%);热解恒温时间过短或过长都会影响煤中硫的脱除,最佳热解恒温时间为60 min;随着煤粒粒径的增大,热解过程中传质阻力增加,不利于煤中硫的脱除,粒径≤0.2 mm时褐煤半焦中硫含量最低。  相似文献   

10.
实验采用非等温半连续过程,进行了油页岩超临界萃取研究。实验装置由海登教授提供,研究经费由教育部资助。已完成黄县、桦甸、抚顺和茂名四个矿八种油页岩样品实验。样品粒度为1.2—2.5mm,压力为10MPa,终温为550℃,升温速率为3K/min,溶剂为甲苯。油页岩萃取转化率为油母的55-86%,萃取物产率为油母的40-55%。以油页岩干基计算萃取转化率、萃取物产率以及气体产物产率随油页岩有机质含量增加而增大。萃取物开始生成温度介于300—400℃,生成速率峰值温度出现于420—450℃,温度高低与油页岩性质和萃取条件有关。气体产物在400℃以上形成,其主…  相似文献   

11.
传热Biot数的大小是判别颗粒内部温度均匀性的依据。计算了颗粒油页岩在流化床燃烧条件下脱挥发分过程和半焦燃烧过程的Biot数。结果表明,脱挥发分过程中颗粒油页岩内部存在着较大的温度梯度。半焦燃烧过程的Biot数小于0.1,可将颗粒视为等温,讨论了相关的动力学处理方法。  相似文献   

12.
用TG-DTG-DSC研究生物质的燃烧特性   总被引:6,自引:0,他引:6  
利用TG-DTG-DSC(热重-微分热重-差示扫描量热法)热分析联用技术,对生物质稻杆(DG)、麦杆(MG)和油菜杆(YCG)分别在10℃/min,20℃/min和40℃/min升温速率条件下的燃烧动力学特性进行了研究.考察了其着火温度、最大失重速率和燃尽温度等燃烧特征参数,计算了综合燃烧特性指数和燃烧动力学参数.结果表明:随着升温速率由10℃/min增加到40℃/min,其最大失重速率和最大失热量分别增加了3倍和1.5倍左右,综合燃烧特性指数增加了13~16倍,活化能在其不同燃烧区段相差5~30kJ/mol.  相似文献   

13.
利用微量硫分析仪对甘肃窑街油页岩热解过程中硫的析出特性进行分析,考察了不同温度和催化剂作用下热解气中硫的形态分布和析出特点。结果表明:油页岩在低温下总硫的析出量最大;随着温度升高,总硫的析出变化复杂,475℃的析出量最大为5 060.41 mg/m3;热解气中,H2S的析出量最大,475℃时为5 272.66 mg/m3。不同温度下,油页岩中硫的析出机理不同。添加催化剂对油页岩中硫的析出具有促进作用,膨润土和Mo S2对硫的析出的促进作用最大,总硫析出量比常规热解提高4.58倍和3.95倍;活性白土和环烷酸钴的促进作用最小,分别比常规热解提高64.01%和32.95%。  相似文献   

14.
孔隙结构是油页岩的一个重要特征,直接影响油页岩内的传热效率与油气流动行为。为分析油页岩孔隙结构在热解过程中的演化规律,采用热重分析与低温氮气吸附(LTNA)手段,定量分析了压力及不同热解终温下油页岩孔隙结构特征。结果表明:抚顺油页岩的有机质降解阶段为350~540℃,干酪根分解与沥青的二次分解在同一温度区间完成,没有明显的两阶段过程。以有机质热解起始温度350℃为界,孔隙结构与类型发生重大改变。低于该温度时以墨水瓶型孔为主,高于该温度时以狭缝型孔为主,有机质热解对油页岩孔隙类型的变化起控制作用。油页岩孔隙结构演化涉及复杂的物化过程,是有机质、热解产物与无机矿物共同作用的结果,有机质的热解使比表面积与孔体积产生大幅增加,研究结果可作为油页岩原位开采的有益参考。  相似文献   

15.
建成了处理能力为 10kg/h固体热载体快速热解法干馏(简称新法干馏)连续实 验装置。在此装置上进行了桦甸油页岩热解实验,油页岩粒度0.5—2.5mm; 页岩灰 渣是热载体,温度为700—750℃;油页岩干馏温度范围为445~524℃;热载体与原 料页岩比为3—4.油收率最佳干馏温度为490℃左右,油收率可达低温干馏试验收 率的 90%以上。干馏煤气热值 14.6—25.6MJ/m3.页岩灰渣含碳甚低。桦甸油页 岩采用新法干馏技术有一定经济效益。  相似文献   

16.
利用高电压工业频率电流加热油页岩,可以在油页岩内部形成等离子体的通道,利用产生的等离子体与导电通道碳化的内表面对油页岩进行加热,实现油页岩的原位裂解.本文采用有限元分析软件建立油页岩三维耦合模型,通过数值计算获得高压工频裂解油页岩的温度场分布.在电压为1000V,工业频率电流为5A时加热6min,油页岩电极中心部位的温度达到597℃,在电极附近30mm范围内,温度达到347℃,满足油页岩裂解需求;随电流的增加,相同时间内油页岩被有效加热的温度增加,并且有效热解的范围增大.从数值模拟结果分析可知,高电压工业频率电流加热裂解油页岩技术,升温速率快,能量有效利用率高.  相似文献   

17.
利用管式炉层燃方式研究了燃烧温度、气氛等不同条件对高硫石油焦燃烧过程中多环芳烃(PAHs)生成及其分布的影响,探讨了石油焦特性对生成PAHs种类的影响。研究结果表明,石油焦在空气中燃烧PAHs的生成总量随着实验温度(600~900℃)的升高先增加后降低,在700℃时达到最大值。石油焦在氮气中热解时,PAHs生成规律也是随温度升高先增加后降低,在800℃时达到最大释放值。不同反应温度和气氛下释放的PAHs均以低环芳烃为主。相同燃烧条件下,随着石油焦挥发分质量分数的增加,PAHs生成量总体呈现增加趋势;石油焦中硫元素质量分数的增加会使PAHs生成量减少;随着石油焦中碳元素质量分数的增加,PAHs生成量呈现先降低再增加的变化趋势。  相似文献   

18.
文章以白竹和烟煤为原料,在不同共炭化温度、不同掺混比条件下制备共炭化产物,采用热重分析法研究产物在不同升温速率条件下的燃烧特性,并采用Kissinger-Akahira-Sunose(KAS)法和Flynn-Wall-Ozawa(FWO)法计算动力学。结果表明,共炭化产物在燃烧过程中只出现1个峰,与煤单独燃烧基本一致,但综合燃烧特性优于煤;随着共炭化温度升高(350~550℃),灰分增多,燃烧效果下降;随着升温速率提高,样品微商热重(derivative thermogravimetric, DTG)曲线向高温段偏移,但样品的失重量不变;随着白竹掺混比增加,共炭化产物燃烧的失重量随之减少,着火、燃烧性能逐渐提升;白竹与煤共炭化产物燃烧时会出现协同效应;采用FWO法、KAS法活化能结果相近,FWO法模型较优,其线性相关系数高于0.95;白竹与烟煤按质量比7∶3掺混,在350℃条件下共炭化,升温速率为20℃/min时共炭化产物综合燃烧特性指数最好(3.98×10-7 min-2·℃-3),最小着火能量最低(85.85 kJ/...  相似文献   

19.
采用热重红外联用仪研究了印染污泥与烟煤的掺混燃烧过程.结果表明:污泥燃烧存在3个主要阶段,分别对应于150~350℃区间纤维类挥发分的析出和燃烧、350~500℃区间细菌蛋白质等高分子有机质的燃烧以及500℃后无机染料矿物质的煅烧;烟煤中掺入印染污泥可提高着火特性,30%掺混时可降低着火点约20℃,同时综合燃烧特性指数下降;印染污泥燃烧初期活化能仅为70 k J/mol,燃烧后期活化能升至130~160 k J/mol;随烟煤中污泥添加量的增加,混合物初始阶段的活化能减小而后续燃烧阶段的活化能增大.综合分析发现,当污泥量低于20%时,对整体燃烧特性的影响较小.热重红外曲线表明:污泥与烟煤混合后,矿物质之间通过反应对污染物的行程产生影响;污泥灰分中的碱性氧化物以及起固硫催化作用的Fe_2O_3有利于将混合物中的硫固定在灰渣中;NO_x主要来源于燃料型NO_x的释放;由于污泥易于脱挥,析出小分子的可燃气体形成还原性气氛,有利于降低混合物燃烧前期NOx的生成.  相似文献   

20.
将茂名和抚顺油页岩及其超临界态甲苯半连续抽提的抽余物,分别用压汞法孔率仪测定它们的孔容与孔分布曲线。红外光谱、x射线衍射分析、热重分析与电镜鉴定等结果表明:矿物质在超临界流体抽提过程中的性质,没有明显的变化。计算得出的油页岩与抽余物的孔容差,与抽出物的体积基本相当。由此认为:抽余物与油页岩的孔容差分布曲线,能定量地反映有机质在油页岩中的分布状况。这两种油页岩中有机质的分布均十分细密。茂名油页岩中有机质的90%分布在孔径为300—10,000埃的范围内;抚顺油页岩的相应值为80—6,000埃。对所得结果与油页岩加工工艺的关系,进行了初步探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号