首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 343 毫秒
1.
用声强测量法分析轮式装载机驾驶室内声场   总被引:3,自引:1,他引:3  
声强的矢量性使声强测量在应用时受环境限制少 ,易于确定声源位置、声能流向等 ,已成为噪声源鉴别 ,声功率测定和声场分析的有效手段之一 笔者应用声强测量法对轮式装载机驾驶室内声能流和声强分布进行了测量及分析 ,指出了影响该驾驶室内噪声的主要原因 通过分析认为 ,就样机而言 ,轮式装载机驾驶室内的主要噪声源是发动机噪声和驾驶室壁面所辐射的噪声 ;在发动机噪声中 ,排气噪声对驾驶室内噪声的影响相对较大 ;此外 ,驾驶室自身的结构对其内部噪声的影响也不可忽略 在此基础上 ,提出了有效降低该驾驶室内噪声的措施 ,可为产品的低噪声改进设计提供参考  相似文献   

2.
国产双钢轮振动压路机噪声超标,严重影响了驾驶员舒适性及周围环境。为有效解决双钢轮振动压路机的噪声问题,通过优选低转速发动机、优化风扇参数和进风通道结构来降低噪声源辐射能量,并对驾驶室进行声学封堵等措施来减弱噪声的传播,使得整机噪声接近国标限值,但发动机与液压泵的安装舱仍存在较大的泄露噪声。针对此问题,采取将发动机进、排气管口、散热器排热口设置在发动机舱的上部位置,并通过对发动机和液压泵安装舱等部位进行声学封装等措施进一步削弱噪声的传播;与此同时,采用智能调速风扇增强散热,合理设置液压系统工作参数减少系统发热,通过起步时行走与振动液压系统的瞬时功率峰值的错位降低发动机的最大功率需求。整机噪声综合防治的试验结果是,在保证整机热平衡条件下,驾驶员左右耳旁噪声优于国标约10 dB( A),整机左右7.5 m处优于国标限值0.8~3.5 dB( A)。  相似文献   

3.
张超  张劲松  万雳  徐巍  周明刚 《科学技术与工程》2021,21(30):12860-12865
为研究某型内燃机车驾驶室噪声产生的原因,基于实车试验,构建内燃机车驾驶室声学数值模型对驾驶室进行噪声特性分析。将试验测量的激励信号加载到发动机4个悬置点上计算声学响应,结合板块贡献量分析、振动试验、声学模态分析、耦合模态分析明确驾驶室噪声形成机理,在此基础上提出措施改善驾驶室内噪声环境。研究结果表明,驾驶室内噪声和壁板振动加速度在74Hz、110Hz处存在明显峰值,并且与发动机基础转频密切相关;在39Hz、74Hz、110Hz处驾驶室左、右、前壁板与室内声腔存在耦合共振响应,最终形成驾驶室特殊噪声分布。相关研究结果可以为降低驾驶室异常噪声提供参考。  相似文献   

4.
内燃叉车的噪声源众多,识别主要噪声源成为叉车降噪工作的首要任务.利用声强的矢量特性,运用声强测量技术对内燃叉车的噪声进行测量.通过分析各测量面上的三维声强图和声强分布图,确定内燃叉车的主要噪声源为进气、排气噪声以及发动机底部的泄露噪声,说明了声强测量是辨识庞大设备集中性噪声源的有效方法,可为后续叉车的降噪工作提供依据.  相似文献   

5.
在某微型客车的车外加速噪声控制研究中,运用声强测量原理对某微型客车的表面噪声进行了声强测量,得到了该车的表面辐射噪声的声场分布.综合运用声功率分析方法、声强等高线图分析方法以及频谱分析方法,对其表面辐射噪声进行了声源识别和研究,确定了其主要噪声源是发动机噪声和排气噪声,而车身振动噪声、轮胎噪声、传动系噪声、进气噪声对整车表面辐射噪声的贡献较小.为确定该车车外加速噪声控制的研究重点提供了有效的参考依据.  相似文献   

6.
对履带式车辆内部噪声级和噪声频谱进行了测试,分析了主要噪声源,给出了驾驶室中噪声的空间分布。行驶时车辆内部各点的声压级均大于100 dB(A),在驾驶室中的噪声分布呈现前低后高、上低下高的特性。发动机的噪声辐射及其对车体结构的动态激励是驾驶室中最主要的噪声源,而行走系统对驾驶室内噪声的影响相对次要。倍频程曲线表明,低频处的声压级明显高于中高频处的声压级。  相似文献   

7.
振动压路机施工噪声的传播规律及控制对策   总被引:5,自引:2,他引:5  
为了治理振动压路机施工时的噪声污染,对两种型号振动压路机施工时的噪声进行了现场测试,对试验数据进行了统计分析,并与采取隔声屏后的噪声数据进行了对比研究,得出振动压路机施工时噪声随距离变化的衰减规律。结果表明,利用隔声屏降低噪声效果明显,在距噪声源7.5m处就达到了国家噪声限制标准70dB。  相似文献   

8.
发动机壳体辐射噪声预测   总被引:3,自引:0,他引:3  
采用虚拟预测方法研究某发动机壳体的振动特性及噪声辐射特性.采用有限元法分析发动机壳体在振动加速度激励下的动态响应,得到壳体表面的振动速度频谱图,并与试验所得壳体上典型点的振动速度频谱图进行对比,仿真结果与试验结果吻合较好.将计算得到的壳体所有外表面节点的振动速度作为边界元模型的输入载荷,导入到声学仿真分析软件中,计算由壳体表面振动而辐射出的噪声,并用声强试验进行验证,对比了理论计算数据与试验数据,两者的噪声分布云图及噪声源中心点处的声强频谱图,并分析了误差产生的原因,结果表明,采用有限元法与边界元法联合求解的方法能够有效地预测出壳体辐射噪声.  相似文献   

9.
为了研究一台4缸柴油机的主要噪声源,采用近场声压法测量了4缸柴油机气缸罩盖、燃油泵和油底壳等14个零部件近场声压级,分析了各零部件噪声对整机噪声的贡献率.应用声强扫描法对柴油机油泵侧、排气侧、风扇侧和摇臂罩盖侧进行了近场声强扫描,采集了主要噪声源近场频谱.结果表明:柴油机在标定工况运行,燃油泵齿轮啮合噪声对整机噪声贡献率为37%,油底壳表面辐射噪声占整机噪声能量的22%;燃油泵齿轮啮合噪声在630 Hz和2 000 Hz处噪声出现峰值,油底壳辐射噪声在各频率段都存在峰值;2种方法识别出的柴油机主要噪声源一致,燃油泵齿轮啮合噪声和油底壳辐射噪声是柴油机主要的噪声源,气缸罩盖辐射噪声、附件箱齿轮啮合噪声和曲轴箱辐射噪声是柴油机的次要噪声源.  相似文献   

10.
对LG5030GJY型流动加油车加速行驶车外加速噪声进行被动降噪改进设计。该流动加油车原车状态的加速行驶车外噪声为77.5dB(A),主要噪声源为发动机和排气噪声,车外加速噪声随着发动机转速的上升而加大,加速噪声最大声级频谱峰值主要集中在100~200Hz的低频段。采取在驾驶室下部及发动机周围加装ABS+2.5mm隔音毡进行降噪,在发动机和水散热器支架上安装减振垫,对发动机进行隔声减振处理。实施降噪改进措施后,该流动加油车的加速行驶车外噪声能够满足77 dB(A)标准值的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号