首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 908 毫秒
1.
镍-纳米Al2O3复合电镀的工艺研究   总被引:5,自引:0,他引:5  
文章研究了镍-纳米氧化铝复合电镀的配方和工艺条件,考察了纳米微粒的用量、分散剂、分散方法、pH、电流密度、施镀条件等因素对施镀工艺和镀层外观的影响.通过正交设计法获得最佳工艺条件为:pH=4.5,t=60℃,电流密度J≈3.2 A/dm2.  相似文献   

2.
由于化学复合镀体系不稳定,对工艺条件的要求也比较严格,因此工艺条件对于化学复合镀工艺起着重要作用。以碳钢为基材对其表面进行Ni-P-纳米TiO_2化学复合镀。以沉积速率、分散性、镀层孔隙率以及显微硬度作为评价指标,通过单因素和正交实验来研究镀液中添加纳米TiO_2含量、施镀温度、复合镀液的pH值对纳米TiO_2化学复合镀的影响来优化工艺条件。得到最优工艺条件为纳米TiO_2含量1.0 g/L,温度为88℃,pH值为5.0时沉积速率、分散性、镀层孔隙率以及显微硬度较好。  相似文献   

3.
镍-磷-Si3N4纳米粒子复合镀工艺研究   总被引:1,自引:0,他引:1  
通过正交试验法确定了镍-磷-Si3N4纳米粒子复合镀最佳施镀工艺,对正交试验进行了详细的分析,从而确定了镀层最佳施镀工艺:纳米粒子含量为1.0g/L,施镀温度为82℃,镀液pH=4.8。  相似文献   

4.
铅酸蓄电池因其原材料丰富和价格便宜等优点而在军事、民用领域中广泛应用。为了更好地降低能耗,使铅酸蓄电池的电极薄型化、轻量化,选择铝栅板镀铅替代目前铅酸蓄电池中的纯铅板电极,可以有效地降低蓄电池的重量,这就要求铝栅板上的铅镀层必须具有良好的致密性。本试验对铝栅板镀铅过程的施镀时间,电流密度,镀液温度,pH值,预镀工艺等影响因素进行了研究,探讨了改善铅镀层致密性的方法。结果表明:施镀时间、电流密度、镀液温度和pH值对镀层孔隙率的影响较大,在施镀时间为30 min,电流密度为1.0 A/dm2,镀液温度为40~50℃,pH值在4.0~6.0之间时,所得铅镀层的孔隙率较低。不同的预镀工艺对镀层孔隙率也有影响,采用浸锌→水洗→电镀镍→水洗→电镀铜→水洗→电镀铅工艺时,铅镀层的孔隙率最低。  相似文献   

5.
用电沉积的方法在铜表面制备了Ni-SiC纳米复合镀层,研究了不同的工艺参数,包括阴极电流密度、镀液中纳米SiC悬浮量、镀液pH值、镀液温度和搅拌速度对复合镀层的沉积速率的影响。结果表明:在实验电流范围内,镀层的沉积速率随着阴极电流密度的增大呈线性上升的趋势;随着镀液中纳米颗粒悬浮量、镀液pH值及搅拌速度的增大而增大,当达到一定值时,又开始下降;随着镀液温度升高,逐步降低。最佳参数为:不烧焦镀层前提下的最大电流,纳米颗粒体积质量为5 g/L,pH值3.5~4.0,温度30℃,搅拌速度为中高速。  相似文献   

6.
研究了阴极电流密度、镀液的pH值、镀液的温度对三层镍镀层内应力及耐蚀性能的影响,并通过对比分析,确定了最佳工艺条件。在此条件下,镀层质量达到有关国家标准。  相似文献   

7.
电沉积镍钴纳米合金的制备及性能   总被引:2,自引:0,他引:2  
采用直流电沉积方法在镀液中加入有机添加剂制备出镍钴纳米合金镀层.采用扫描电镜分析了镀层的微观形貌及晶粒尺寸,研究了电流密度、pH等工艺条件以及有机添加剂和稀土钐对镀层中钴含量的影响,采用加热实验法测定了镀层的结合力.实验结果表明,镀层表面致密、平整,结合性能优良.  相似文献   

8.
采用复合电镀的方法,在焊丝表面施镀Ni-TiO2的涂层,研究了施镀时间、镀液温度、电流密度和硫酸镍的含量等因素对镀层的影响.利用正交实验法综合考虑各因素选出Ni-TiO2复合电镀层的最佳工艺参数.实验结果表明,理想的工艺为:施镀时间5min,镀液温度40℃,硫酸镍的浓度100g/L,电流密度4A/dm2.  相似文献   

9.
为进一步提高结晶器的使用寿命,进行了Ni基纳米ZrO2复合电镀工艺研究。采用正交实验法对影响镀层性能的镀液温度、电流密度、极间距、纳米ZrO2添加量等因素进行研究,分析了镀层的硬度,并对镀层的表面结构进行扫描电镜观察。结果表明,Ni基纳米ZrO2复合电镀可以提高镀层的硬度,最佳工艺条件为镀液温度55℃,电流密度2 A/dm2,极间距10 cm,纳米ZrO2添加量2 g/L。  相似文献   

10.
Cu-Sn-Zn三元无氰仿金电镀工艺研究   总被引:3,自引:0,他引:3  
采用焦磷酸盐Cu-Sn-Zn三元碱性仿金镀体系新工艺,通过改进镀液配方,进行正交试验,得到最佳工艺条件为:实验温度37℃,pH值8.5,电镀时间45 rain和电流密度0.20 A/dm2.以仿金镀速率、外观状况作为衡量标准,重点研究了镀液温度、电流密度对仿金镀镀速和镀层颜色的影响及电镀时间对镀层厚度的影响.结果表明,在其它条件既定的情况下,延长电镀时间可得到传统电镀镀层厚度20倍的镀层.  相似文献   

11.
为提高滚动轴承表面硬度、耐磨性和使用寿命,按均匀试验设计,使用镍基复合电镀技术,探索了纳米金刚石微粒大小、质量浓度、电镀电流密度、镀液成分、温度及pH值等8个因素的各6个水平在不同组合下对轴承表面质量、硬度、结合力和金相组织等镀层性能的影响.试验表明:合适的纳米金刚石微粒大小、质量浓度、电镀电流密度、镀液成分、温度及pH值组合,可以有效提高轴承的表面硬度和耐磨性,表面金相组织均匀致密,从而达到提高轴承使用寿命的目的.  相似文献   

12.
本文研究了硫代硫酸钠无氰镀银工艺镀液组分的变化对银镀层在附着力、光亮度等性能方面的影响,从而得到硫代硫酸钠无氰镀银工艺的最佳镀液配方。另外通过改变阴极电流密度、温度和pH值,考察对银镀层质量的影响,得到了硫代硫酸钠无氰镀银工艺的最佳条件。  相似文献   

13.
系统研究了石英光纤表面酸性化学镀镍工艺,同时研究了温度、主盐浓度、pH等影响镀层表面形貌的因素.得到石英光纤敏化、活化的最佳温度为35℃.最佳施镀条件为:次磷酸钠浓度为0.2 mol/L,镀液中镍离子与次磷酸钠的质量浓度比为0.35,pH值为4.8,温度为88℃.在优化的工艺条件下,发现光纤施镀前预处理过程中的粗化不是...  相似文献   

14.
对焦磷酸盐仿金镀镀液的性能进行了研究,讨论了温度、电流密度及添加剂对镀液性能的影响,找出了该镀液的最佳工艺条件。  相似文献   

15.
ABS塑料低温快速化学镀铜的研究   总被引:9,自引:0,他引:9  
提出了在碱性条件下,以甲醛为还原剂,酒石酸钾钠和EDTA为络合剂,硝酸铅和碘化钾为稳定剂的适宜于ABS塑料表面化学镀铜的工艺。在该条件下施镀,镀速快,可镀厚铜,镀层光亮,镀液稳定,且由于施镀温度较低,极有利于在ABS表面施镀。  相似文献   

16.
纳米碳化硅-镍复合电镀的研究   总被引:1,自引:0,他引:1  
采用复合电镀技术在铜基上制备了高硬度、高耐磨的Ni-SiC纳米镀层。研究了阴极电流密度、镀液pH、温度以及搅拌速度对复合沉积层的显微硬度和共沉积速率的影响,同时优化了各工艺参数,并对Ni-SiC纳米复合镀层进行了表面形貌和能谱分析。实验结果表明,Ni-SiC纳米复合电镀层表面平整光滑,显微组织均匀、致密,其显微硬度也较纯镍镀层有显著提高。  相似文献   

17.
机械研磨化学复合镀Ni-P-Al2O3工艺   总被引:1,自引:0,他引:1  
采用机械研磨化学复合镀工艺在模具锌合金表面获得Ni-P-Al2O3复合镀层,研究镀液成分、纳米Al2O3加入量和工艺条件对镀速的影响.结果表明:硫酸镍、次亚磷酸钠和纳米Al2O3在镀液中的含量均存在极限值,超过极限值后镀速开始下降;在镀液不发生分解时,pH值和温度的提高使镀速迅速上升;机械研磨使镀速显著减小,但玻璃球直径大小对镀速影响不大.优化工艺条件下镀速可达12~13μm/h,在此工艺下获得的镀层硬度高、耐蚀性好.  相似文献   

18.
采用恒电流沉积法,在含有NdCl3的酸性镀液中获得了不同Nd含量的Fe-Nd-P合金镀层.利用电子显微分析、能谱分析研究了镀层的形貌及成分.测得从H3PO3镀液中获得Fe-Nd-P合金镀层中稀土元素Nd的质量分数高达71.51%.通过测试镀层的沉积速率,研究了水溶液电沉积Fe—Nd—P工艺中金属盐、络舍剂浓度、电流密度、镀液pH值、温度等对镀层沉积速率的影响,确定了最佳镀液配方及工艺条件.  相似文献   

19.
在确定纳米TiO2超声分散工艺的基础上,采用正交试验和单因素比较法,系统研究了镀液配比、pH值、温度、PbCl2和纳米TiO2加入量对Ni-P-纳米TiO2化学复合镀镀液稳定性的影响。研究结果表明:镀液的配比、pH值、温度对镀液稳定性均有影响,其影响的显著性顺序是:pH值小于乳酸浓度小于温度小于镍磷比小于乙酸钠浓度的影响;PbCl2的加入可使镀液的稳定性明显提高,而纳米TiO2的加入对镀液的稳定性几乎没有影响;推荐Ni-P-纳米TiO2化学复合镀采用的镀液为:x(Ni^2 /H2PPO2^-)=0.4,ρ(乳酸)=34g/L、ρ(乙酸钠)=4g/L、ρ(PbCl2)=0.0010g/L、ρ(TiO2)=4g/L。  相似文献   

20.
在ABS塑料基体上化学沉积铜,然后在50℃、电流密度为0.9A/dm^2、沉积35min的条件下得到光亮镍镀层的基础上,进行Cu—Zn二元合金的焦磷酸体系仿金镀。重点对镀液性能和工艺条件进行探讨,得到了焦磷酸钾浓度为360g/L,电流密度为1.25A/dm^2的最佳工艺条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号