首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
针对某厂应用LD--RH--CC工艺生产SPHD低碳低硅铝镇静钢过程中,水口结瘤严重、连浇炉数较低的问题,通过现场试验研究了萤石的加入对钢中夹杂物及钢水连浇性的影响.试验结果表明:水口结瘤物的主要成分是Al2O3--CaO--MgO,其中Al2O3质量分数在70%以上.通过向RH炉真空室内加入一定量的块状萤石,可将出站精炼渣中钙铝质量分数比wCaO/wAl2O3控制在2左右,铸坯中Al2 O3夹杂物含量有所减少并且粒径变小,钙铝酸盐夹杂物比例有所提高,连浇炉数可达到3炉以上.  相似文献   

2.
为了提高高铝钢可浇性,在转炉出钢及LF精炼过程对钢包渣进行改质处理,连铸采用专用高铝钢保护渣,中间包采用塞棒吹氩+密封圈等水口防堵工艺。工艺试验结果表明,夹杂物组成可控制在12CaO·7Al2O3、3CaO·Al2O3低熔点组成区域,浇铸时长为4.5~6h时,液面状况正常,无结团,渣条较少且无硬渣条,铸坯表面质量优良,连续浇铸炉数不低于6炉。  相似文献   

3.
利用热力学软件计算了齿轮钢氧含量与夹杂物成分控制、夹杂物转变条件.结果表明,20CrMoH钢中具有较高塑性的非金属夹杂物成分(质量分数)为:SiO2 0%~10%、Al2O3 22%~55%、CaO 42%~60%、MgO 5%~10%,与之平衡的钢液中铝的质量分数大于0.020%,钙的质量分数大于0.7×10-6,a[O]为0.0005%左右;选择组成为CaO>40%、Al2O3≤37%、MgO10%、(%CaO+%MgO)/%SiO2为10、SiO2含量尽量低的渣系,钢中Al2 O3、MgO.Al2 O3夹杂物可转变为低熔点的钙铝酸盐.试验发现LF和RH精炼结束时钢液T[O]含量均随炉渣碱度增加而降低,采用高Al2O3含量的炉渣对降低T[O]含量有利;精炼过程钢液中夹杂物按"Al2O3系夹杂物→MgO--Al2O3系夹杂物→CaO--MgO--Al2O3系夹杂物"顺序发生转变,其中MgO--Al2 O3系夹杂物向CaO--MgO--Al2 O3系夹杂物的转变是由外向内逐步进行的,转变速度相对较慢;降低T[O]含量有利于生成较低熔点的CaO--MgO--Al2O3系夹杂物.  相似文献   

4.
基于对钙处理钢浇铸过程水口堵塞实物显微组织结构的观察,对钙处理钢水浸入式水口堵塞成因进行了分析,提出防止水口堵塞的措施.结果发现,CaO·6 Al2O3和CaO·2Al2O3是水口主要堵塞物;水口内壁氧化铝层一方面来源于水口内表层的基质料,另一方面来源于水口耐火材料与钢中[Al]s的反应产物,所形成的氧化铝层和钢中钙反应生成难溶的铝酸钙,同时吸附钢中铝酸钙夹杂而造成水口堵塞.防止水口堵塞的有效措施是进行钙处理、提高钢水纯净度以及改善水口材质和形状.  相似文献   

5.
精炼渣成分对高强度低合金钢中非金属夹杂物影响   总被引:4,自引:0,他引:4  
采用渣钢平衡的实验方法研究了1600℃下不同碱度和不同Al2O3含量的强还原性精炼渣对高强度低合金钢中非金属夹杂物的影响.结果表明:渣钢反应平衡后,炉渣中CaO和SiO2的质量比为1.9~4.5、Al2O3质量分数为21%~33%,钢中夹杂物主要为球状的CaO-MgO-Al2O3-SiO2系,尺寸在5μm以下,炉渣成分对夹杂物的成分影响很大.夹杂物主要分布在SiO2含量一定的CaO-MgO-Al2O3-SiO2伪三元相图中1 400~1 500℃的低熔点区,随着炉渣碱度的提高和Al2O3含量的降低,部分夹杂物逐渐偏离低熔点区域,夹杂物的总数量逐渐减小.当渣中Al2O3质量分数为21.22%、碱度为3.27时,有大量夹杂物分布在高熔点区域,夹杂物的总数量最小.  相似文献   

6.
高级别管线钢钙处理效果评价标准   总被引:2,自引:1,他引:1  
对X70管线钢进行了六炉钙处理实验.结果表明:钙处理后管线钢生产的后续工序中钢中钙含量显著下降,夹杂物组成和形貌发生显著变化;二次氧化会降低管线钢钙处理效果,但钢中溶解钙和较高CaO含量的CaO-Al2O3复合夹杂可对钢水二次氧化产生的Al2O3发生改性作用;高级别管线钢钙处理效果与钢中钙含量、氧含量、硫含量、钢水二次氧化程度以及钙处理后续时间等有关,采用钢中Ca含量、[%Ca]Tot/[%Al]s、[%Ca]Tot/T[O]、ACR和[%Ca]Tot/[%S]作为钙处理效果的评判标准均存在缺陷.本文建议钙处理效果评判标准为:①铸坯中心部位或轧后板带中心部位不存在单纯的MnS夹杂;②中间包和结晶器中夹杂的nCaO/Al2O3应该与12CaO.7Al2O3相近;③钙处理后夹杂的nCaO/Al2O3应稍高于12CaO.7Al2O3的夹杂.同时还必须注意钙处理应在最后精炼工序的后期进行,尽量防止钢水的二次氧化.  相似文献   

7.
低碳含铝钢LF炉精炼工艺及精炼渣的优化   总被引:2,自引:1,他引:2  
针对低碳含铝钢转炉生产的粗钢水[O]含量高和钢水[C]低的特点,提出了采用CaO-Al2O3的LF炉精炼渣系.为兼顾脱硫和吸收同化夹杂的需求,可选取(质量分数)CaO=55%~60%,SiO2=4%-7%,Al2O3=28%~32%,MgO=4%~8%,CaO/Al2O3=1.7~1.9作为LF炉精炼终渣组成.出钢过程中采用渣洗工艺向钢包内加入大部分精炼渣、出钢末期对转炉下渣还原处理的造渣模式,结合足够的软吹Ar时间,对16MnR进行精炼,得到了脱硫率为61.8%,铸坯T[O]为22×10-6,铸坯中大型夹杂总量为15.68mg/10kg钢的良好冶金效果.  相似文献   

8.
为探究降低顶渣氧化性对改善超低碳钢钢液洁净度的影响,在转炉终点至中间包过程中,在多位置取炉渣和钢水试样,分别进行炉渣氧化性、钢液成分和夹杂物分析.实验结果表明:转炉出钢后通过对顶渣改质,渣中T.Fe由转炉终点的19.18%降至RH进站时的4.68%,顶渣氧化性降低明显.渣中T.Fe降低导致钢中[O]的降低,T.Fe较低的炉次平均吹氧量较大,使得铝脱氧前钢中[O]较高.RH结束渣T.Fe与夹杂物数量呈线性关系,T.Fe越低夹杂物数量越少,同时RH结束后夹杂物数量与铝脱氧前钢中[O]无必然关系.顶渣(CaO)/(Al2O3)会影响其吸收Al2O3夹杂物的能力,(CaO)/(Al2 O3)控制不合理的炉次,其夹杂物数量也较多.通过降低顶渣氧化性,热轧板卷缺陷率得到明显降低.  相似文献   

9.
针对轴承钢中钙铝酸盐大型夹杂物的控制问题,通过计算GCr15轴承钢中尖晶石MgO·Al2 O3、钙的铝酸盐CaO·6Al2 O3夹杂物生成热力学,分析精炼渣成分与夹杂物类型之间的定量关系.结果表明:当钢水中含有质量分数0.10×10-6的溶解钙[Ca]时,只要溶解镁[Mg]质量分数小于10×10-6,MgO·Al2O3就会被[Ca]还原成 CaO·6Al2O3;当精炼渣碱度为7.04,(MgO)质量分数为1.38%时,钢水中溶解[Mg]质量分数比临界[Mg]质量分数低56%,夹杂物以尺寸大于10μm的CaO-Al2O3系复合夹杂为主;当精炼渣碱度为3.75,(MgO)质量分数3.14%时,钢水中溶解[Mg]质量分数比临界[Mg]质量分数低14%,夹杂物以尺寸小于8μm的MnS包裹MgO·Al2 O3复合夹杂为主;当精炼渣钙铝比C/A为1.8~2.0时,控制精炼渣碱度R为4.5~5.5,(MgO)质量分数为3%~5%,即能使钢中MgO·Al2O3保持稳定而不转变为CaO·6Al2O3.  相似文献   

10.
冶炼过程中产生的夹杂物对65钢(C:0.62~0.70、Si:0.17 ~0.37、Mn:0.50~0.80)性能有较大影响,采用扫描电子显微镜分析了不同生产阶段65钢中夹杂物,结果表明,转炉出钢钢样中氧化物夹杂主要为FeO·CaO·SiO2、Al2O3·CaO·SiO2和SiO2·MnO,喂线前钢样中氧化物夹杂主要为CaO·SiO2·Al2O3和SiO2·MnO·Al2O3,中间包钢样中的氧化物夹杂主要为CaO · Al2O3 MnO·SiO2 · FeO和MnO · Al2O3·FeO,盘条中氧化物夹杂主要为CaO ·Al2O3型和CaO·CaS·MnS复合夹杂物.加强合金脱氧、优化钙处理、提高水口氩封和优质保护渣,可促进钢中夹杂物的控制和去除.  相似文献   

11.
通过对低碳含铝钢20Mn2精炼过程的取样分析,得出精炼渣的熔化温度偏高,渣中存在大量固相CaO,并导致钢中含有CaO类夹杂物,精炼渣吸附夹杂物能力差. 利用FactSage热力学计算,从渣的低熔点区域控制和渣-钢反应这两个方面对渣系进行研究与优化. 结果表明,CaO/Al2 O3 质量比在1. 5左右添加质量分数为3% CaF2 可以有效降低渣的熔化温度,渣的熔化温度随着CaF2 含量的升高呈现先降低后升高的趋势,MgO的质量分数控制5%左右低熔点区域面积达到最大. 在SiO2 质量分数大于30%区域,钢中氧含量大体上随着CaO/Al2 O3 质量比的增加而降低,在SiO2 的质量分数低于30%区域随着CaO含量的升高而降低,钢中酸溶铝含量在SiO2 含量高的区域随着Al2 O3/SiO2 质量比的增加而升高,在SiO2 含量低的区域随着CaO/SiO2 质量比的增加而增加. 根据热力学分析结果得出合理的渣系范围:CaO 50% ~60%, Al2 O3 20% ~35%, SiO2 5% ~10%, MgO 5% ~8%, CaF2 0~5%. 优化渣系的实验结果表明,优化后渣系熔化温度降低,钢中夹杂物数量、面积和平均尺寸均有明显下降.  相似文献   

12.
Al作为炼钢脱氧剂单独脱氧时易烧损,导致利用率较低;同时,其脱氧产物Al2 O3熔点高,形状不规则,不易在脱氧过程中上浮排出,造成水口堵塞,恶化钢材质量。为了提高铝的脱氧效率,同时使脱氧产物Al2 O3能快速从钢液中上浮排出,本文研究了一种以金属铝为有效脱氧组分,低熔点氧化物渣系为载体的新型复合脱氧剂。实验表明,使用该脱氧剂不仅可以保证钢液中溶解氧的质量分数在10×10-6以下,而且脱氧后钢中Al2 O3夹杂物与纯Al脱氧相比尺寸更小、数量更少,较显著地提高了钢材的纯净度,具有良好的脱氧效果。  相似文献   

13.
在帘线钢冶炼过程中,通过采用炉后弱脱氧、防止钢液污染,以及控制精炼顶渣碱度指数和Al2O3含量指数等措施,使钢中夹杂物向低熔点区域转变,促进钢中夹杂物上浮、排出钢液,同时也使钢中残留氧化物夹杂具有良好的变形性能.实践表明,通过采用上述工艺措施,帘线钢中夹杂物成分、尺寸和变形性得到了有效控制.  相似文献   

14.
从A12O3活度和夹杂物成分两方面来研究精炼渣对夹杂物的影响.采用Factsage软件对CaO—A1203-SiO3-MgO(8%)-CaF2(8%)炉渣中A1203,活度进行了计算,并研究了碱度和(MgO)含量对A12O3度的影响.当炉渣碱度从1.0增加到2.0时,炉渣中A1203活度随着炉渣碱度的增加而降低;当炉渣碱度从2.0增加到3.8时,A1203活度变化幅度很小;(MgO)质量分数分别为5%和8%的渣,A1203活度差距较小;在碱度高的炉渣中[A1]。容易被从炉渣还原到钢水中.在使用高碱度精炼渣的盘条中发现许多含有MgO的硬性夹杂物,并对此进行了分析,最后得出最适宜的炉渣碱度为2.5—3.0.  相似文献   

15.
研究了采用EF+VOD+IC工艺流程生产TP347H不锈钢时由于精炼渣成分产生的二次氧化及其氧化夹杂物的变性处理过程.试验中VOD精炼过程中采用Al进行终脱氧,降低精炼渣中FeO、SiO2含量,精炼渣四元碱度控制在1.3以上,保证钢中全氧质量分数小于0.003%.脱氧后使用喂Ca-Si线及钢包软吹的精炼手段,可将硬质Al2 O3及MgAl2 O4转变为CaO-Al2 O3夹杂,减少硬质MgAl2 O4夹杂总量并使夹杂物熔点低于1500益.此类夹杂在炼钢温度下呈液态且更易于聚集与上浮,而在后续轧制、锻造过程中低熔点夹杂随基体发生形变,减少钢材裂纹的产生.  相似文献   

16.
根据热力学计算,结合生产过程实际,研究了Si脱氧条件下304奥氏体不锈钢在LF精炼、连铸过程夹杂物的变化规律.结果表明,钢水中主要形成CaO-Al2O3-SiO2类复合夹杂物,钢水中Al含量随Si含量的降低逐渐减小.当精炼渣碱度R=1.5时,随精炼、连铸过程的进行,复合夹杂物中Al2O3含量逐渐减少,CaO,SiO2含量逐渐增加.终点铸坯夹杂物成分为30%~35%CaO,20%~27%Al2O3,25%~30%SiO2,其他成分含量较少.终点铸坯夹杂物略显碱性,变形能力稍弱.  相似文献   

17.
The mass transfer among the multiphase interactions among the steel, slag, lining refractory, and nonmetallic inclusions during the refining process of a bearing steel was studied using laboratory experiments and numerical kinetic prediction. Experiments on the system with and without the slag phase were carried out to evaluate the influence of the refractory and the slag on the mass transfer. A mathematical model coupled the ion and molecule coexistence theory, coupled-reaction model, and the surface renewal theory was established to predict the dy-namic mass transfer and composition transformation of the steel, the slag, and nonmetallic inclusions in the steel. During the refining process, Al2O3 inclusions transformed into MgO inclusions owing to the mass transfer of [Mg] at the steel/refractory interface and (MgO) at the slag/re-fractory interface. Most of the aluminum involved in the transport entered the slag and a small part of the aluminum transferred to lining re-fractory, forming the Al2O3 or MgO·Al2O3. The slag had a significant acceleration effect on the mass transfer. The mass transfer rate (or the re-action rate) of the system with the slag was approximately 5 times larger than that of the system without the slag. In the first 20 min of the re-fining, rates of magnesium mass transfer at the steel/inclusion interface, steel/refractory interface, and steel/slag interface were x, 1.1x, and 2.2x, respectively. The composition transformation of inclusions and the mass transfer of magnesium and aluminum in the steel were predicted with an acceptable accuracy using the established kinetic model.  相似文献   

18.
通过对国内某钢厂BOF-LF-CC工艺生产50CrVA弹簧钢进行全流程连续取样,综合分析了冶炼过程中总氧( T. O.)、N含量变化,非金属夹杂物的衍变规律,以及铸坯中大型夹杂物的特征.结果表明,LF精炼前T. O.和N的平均含量分别为106×10-6和13×10-6,铸坯中分别为15×10-6和39×10-6,LF过程脱氧效果明显;运输和浇注过程存在较明显的二次氧化现象,需要加强大包到中间包的保护浇注;铸坯中夹杂物主要为CaO-Al2 O3-MgO和CaO-Al2 O3-SiO2复合氧化物夹杂,其中Al2 O3含量(质量分数)较高,达到60%~70%,未得到低熔点夹杂物,可通过适当提高精炼渣碱度,或喂入适量钙线促使夹杂物充分转变为成分更加均匀的低熔点夹杂物;大型夹杂物以CaO和CaO-Al2 O3-SiO2-( MgO)球状氧化物为主,还存在一定比例的纯Al2 O3夹杂物,需要延长钢包弱搅拌时间使夹杂物充分上浮.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号