首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
针对轴承钢中钙铝酸盐大型夹杂物的控制问题,通过计算GCr15轴承钢中尖晶石MgO·Al2 O3、钙的铝酸盐CaO·6Al2 O3夹杂物生成热力学,分析精炼渣成分与夹杂物类型之间的定量关系.结果表明:当钢水中含有质量分数0.10×10-6的溶解钙[Ca]时,只要溶解镁[Mg]质量分数小于10×10-6,MgO·Al2O3就会被[Ca]还原成 CaO·6Al2O3;当精炼渣碱度为7.04,(MgO)质量分数为1.38%时,钢水中溶解[Mg]质量分数比临界[Mg]质量分数低56%,夹杂物以尺寸大于10μm的CaO-Al2O3系复合夹杂为主;当精炼渣碱度为3.75,(MgO)质量分数3.14%时,钢水中溶解[Mg]质量分数比临界[Mg]质量分数低14%,夹杂物以尺寸小于8μm的MnS包裹MgO·Al2 O3复合夹杂为主;当精炼渣钙铝比C/A为1.8~2.0时,控制精炼渣碱度R为4.5~5.5,(MgO)质量分数为3%~5%,即能使钢中MgO·Al2O3保持稳定而不转变为CaO·6Al2O3.  相似文献   

2.
为了研究高炉渣化学成分与FetO活度、钾容量、硫容量间的规律,采用氧化锆固体电解质电池测定了气-渣-金平衡时的含碱高炉渣中FetO活度.结果表明:二元碱度增加,FetO活度增加,钾容量减小,硫容量增大;MgO,Al2O3含量增加,FetO活度降低,钾容量增大,硫容量先增大后减小;当高炉的碱负荷较高时,控制炉渣的化学成分,使FetO活度保持在0074~0078之间,可以使炉渣具有适宜的脱硫能力和较大的排碱能力,有助于降低碱金属的危害.  相似文献   

3.
以神木煤灰成分为基础配渣,对煤灰成分渣的粘度和熔化性温度进行了试验研究。试验表明:煤灰炉渣一般碱度较低,为典型的长渣。二炉碱度为0.8左右时,炉渣熔化性温度最低。渣中Al2O3过多,渣量少,是炉渣流动性差的主要原因。可以通过配煤或者配加其他助熔物,降低Al2O3含量。增加Na2OMgO含量可以明显降低炉渣熔化性温度,改善流动性。增加MgO效果更为明显。  相似文献   

4.
精炼渣成分对高强度低合金钢中非金属夹杂物影响   总被引:4,自引:0,他引:4  
采用渣钢平衡的实验方法研究了1600℃下不同碱度和不同Al2O3含量的强还原性精炼渣对高强度低合金钢中非金属夹杂物的影响.结果表明:渣钢反应平衡后,炉渣中CaO和SiO2的质量比为1.9~4.5、Al2O3质量分数为21%~33%,钢中夹杂物主要为球状的CaO-MgO-Al2O3-SiO2系,尺寸在5μm以下,炉渣成分对夹杂物的成分影响很大.夹杂物主要分布在SiO2含量一定的CaO-MgO-Al2O3-SiO2伪三元相图中1 400~1 500℃的低熔点区,随着炉渣碱度的提高和Al2O3含量的降低,部分夹杂物逐渐偏离低熔点区域,夹杂物的总数量逐渐减小.当渣中Al2O3质量分数为21.22%、碱度为3.27时,有大量夹杂物分布在高熔点区域,夹杂物的总数量最小.  相似文献   

5.
为使莱钢高炉冶炼中具有合理渣系,保障高炉长期稳定运行,对其炉渣二元碱度及MgO、Al2O3、FeO含量对炉渣黏度的影响进行研究。结果表明,为保证较低的黏度,高炉渣保持二元碱度约为1.15、w(MgO)为8%~10%较适宜;当高炉渣Al2O3含量达到一定值时,其黏度会明显提高,高炉渣中Al2O3含量最好应控制在15%以内;高炉渣黏度随着FeO含量的增加而显著降低,初渣中较高FeO含量可改善其流动性能。  相似文献   

6.
根据熔渣结构的分子离子共存理论,建立了SiO2-Al2O3-CaO-MgO-FeO-MnO六元渣系的活度计算模型。计算得到了LF精炼渣中FeO的活度值,并分析了炉渣成分Al2O3、FeO以及碱度w(CaO)/w(SiO2)对FeO活度的影响,为帘线钢精炼变渣过程中控制回硫提供指导。  相似文献   

7.
湘钢高Al2O3高炉渣粘度研究   总被引:1,自引:0,他引:1  
对湘钢高AlO3高炉渣的粘度进行了测试。通过改变二元碱度R和MgO的含量,探讨在高Al2O3情况下高炉渣的最优配比。实验表明,在高Al2O3下,保持高MgO,较低碱度是可行的。实验中,R=0.95,WMgO=12%的炉渣流动性最好。  相似文献   

8.
借助热力学软件Thermo-Calc和ASPEX自动扫描电镜等分析手段,研究了低合金高强钢精炼过程渣--钢反应和钙处理对夹杂物改性行为的影响.通过提高炉渣碱度和w(CaO)/w(Al2O3)值以及降低炉渣氧化性等措施,钙处理前钢中Al2O3夹杂物转变为靠近1600℃液相区的CaO--MgO--Al2O3复合夹杂物和少量的MgO.Al2O3尖晶石.在渣--钢反应对Al2O3部分变性的基础上,钙线喂入量每炉由优化前的800 m减少到300 m仍能达到夹杂物改性的目的.  相似文献   

9.
测定了合成的不同成份的FeO-CaO-MgO系炉渣的粘度,得知:在炉渣中,当mFe/mso2为1.2~1.5,ωMgO为6%~9%,ωFe3O4为3%~4%,ωCaO为0~9%,温度范围为1250~1450℃时,炉渣粘度随ωFe/ωSiO2和ωCaO的升高而降低,随着ωMgO的升高而增大;在1350℃以上时,上述变化关系则不明显.对于闪速炼镍所采用的FeO-SiO2-CaO-MgO系炉渣,在一般的冶炼操作温度(1300~1350℃)下,当渣中ωMgO高达6%~8%时,仍可获得流动性能良好的渣;当ωMgO在9%以上时,则渣的粘度迅速上升以致不适合于冶炼.同时,在炉渣总量不变的情况下,在一定的范围内通过减少SiO2的加入量和补加CaO含量可使炉渣粘度得到改善.  相似文献   

10.
对不同研究者获得的锰在渣/钢之间分配平衡的相关热力学数据进行了归纳和评估。结果表明,在温度为1873K下,对组成为(O.2%~36.8%)CaO-(4.0%~69.7%)FetO-(7.5%~31.0%)Si02-(6.7%~25.0%)MgO-(O.5%~3.4%)P2O5-(3.4%~16.0%)MnO的炼钢渣,利用聚集电子相模型和经验公式计算MnO的活度与实验测定值相吻合,MnO的活度值为0.02~0.20,用正规溶液模型计算的结果低于实验测定值。MnO的活度受渣中FetO含量的影响不明显,随渣中MnO含量和渣碱度的增加而增大。在误差为±20%的范围内,可用经验公式和聚集电子相模型来预测与渣平衡钢中的锰含量。在炼钢温度下,碱度对锰的分配比影响较大,碱度相同的情况下,高FetO渣有较强的脱锰能力。在温度为1623K下,锰在渣/铁之间的分配比可以通过测定锰在渣/钢之间的分配比,再通过计算得到。  相似文献   

11.
通过对低碳含铝钢20Mn2精炼过程的取样分析,得出精炼渣的熔化温度偏高,渣中存在大量固相CaO,并导致钢中含有CaO类夹杂物,精炼渣吸附夹杂物能力差. 利用FactSage热力学计算,从渣的低熔点区域控制和渣-钢反应这两个方面对渣系进行研究与优化. 结果表明,CaO/Al2 O3 质量比在1. 5左右添加质量分数为3% CaF2 可以有效降低渣的熔化温度,渣的熔化温度随着CaF2 含量的升高呈现先降低后升高的趋势,MgO的质量分数控制5%左右低熔点区域面积达到最大. 在SiO2 质量分数大于30%区域,钢中氧含量大体上随着CaO/Al2 O3 质量比的增加而降低,在SiO2 的质量分数低于30%区域随着CaO含量的升高而降低,钢中酸溶铝含量在SiO2 含量高的区域随着Al2 O3/SiO2 质量比的增加而升高,在SiO2 含量低的区域随着CaO/SiO2 质量比的增加而增加. 根据热力学分析结果得出合理的渣系范围:CaO 50% ~60%, Al2 O3 20% ~35%, SiO2 5% ~10%, MgO 5% ~8%, CaF2 0~5%. 优化渣系的实验结果表明,优化后渣系熔化温度降低,钢中夹杂物数量、面积和平均尺寸均有明显下降.  相似文献   

12.
通过对国内某钢厂BOF-LF-CC工艺生产50CrVA弹簧钢进行全流程连续取样,综合分析了冶炼过程中总氧( T. O.)、N含量变化,非金属夹杂物的衍变规律,以及铸坯中大型夹杂物的特征.结果表明,LF精炼前T. O.和N的平均含量分别为106×10-6和13×10-6,铸坯中分别为15×10-6和39×10-6,LF过程脱氧效果明显;运输和浇注过程存在较明显的二次氧化现象,需要加强大包到中间包的保护浇注;铸坯中夹杂物主要为CaO-Al2 O3-MgO和CaO-Al2 O3-SiO2复合氧化物夹杂,其中Al2 O3含量(质量分数)较高,达到60%~70%,未得到低熔点夹杂物,可通过适当提高精炼渣碱度,或喂入适量钙线促使夹杂物充分转变为成分更加均匀的低熔点夹杂物;大型夹杂物以CaO和CaO-Al2 O3-SiO2-( MgO)球状氧化物为主,还存在一定比例的纯Al2 O3夹杂物,需要延长钢包弱搅拌时间使夹杂物充分上浮.  相似文献   

13.
以钒钛磁铁矿现场高炉渣为基础,纯化学试剂调制渣样,在中性气氛条件下研究了炉渣二元碱度及Mg O,Al2O3,Ti O2,V2O5含量对实验渣系冶金性能的影响.结果表明:增加碱度和Mg O含量,炉渣熔化性温度(tm)、初始黏度(η0)和高温黏度(ηh)呈先降低后升高趋势;增大Al2O3含量,炉渣tm升高,η0先降低后升高,ηh呈上升趋势;增大Ti O2含量,炉渣tm升高,η0和ηh逐渐下降,炉渣黏流活化能升高,热稳定性变差;增大V2O5含量,炉渣tm先降低后升高,η0和ηh逐渐增大.高炉冶炼钒钛磁铁矿适宜渣系为:二元碱度1.15,Mg O,Al2O3,Ti O2,V2O5质量分数分别为13%,13%,7%,0.30%.  相似文献   

14.
在其他工艺相同条件下,对钢中全氧、Al含量、H含量、夹杂物成分、炉渣等进行了对比分析。在真空时间相同的情况下,RH脱氢能力优于VD,VD脱氧能力优于RH,但VD精炼后钢中Al含量偏高,炉渣碱度偏大,夹杂物易偏离塑性区。 RH精炼后渣中MgO含量明显升高,夹杂物成分也比较分散,可能是耐火材料尤其是插入管喷补料脱落导致外来夹杂物增多,而VD精炼后渣中MgO含量变化不大,夹杂物成分相对集中。建议采用RH精炼时,应提高耐火材料质量,减少插入管喷补次数,采用VD精炼时,应适当减少石灰加入量,降低渣中碱度并延长真空处理时间。  相似文献   

15.
结合高效脱磷能力的熔融还原冶炼惠民高磷铁矿工艺及HIsmelt熔融还原炼铁技术的特点选取CaO-MgO-FeO-Al2O3-SiO2-P2O5六元熔渣作为研究对象其熔渣成分为:二元碱度R(CaO/SiO2)0.8~1.4Al2O3质量分数为6.4%~15.4%P2O5质量分数为0~3%、MgO、FeO质量分数分别为4%、6%采用纯化学试剂配制熔渣。借助扫描电子显微镜对炉渣矿物组成和微观结构进行研究采用RTW-10熔体物性综合测试仪研究熔渣成分的变化对黏度产生的影响。研究表明:该熔渣矿相结构主要以黄长石(钙铝黄长石、钙镁黄长石)为主呈方形状、粗大骨架状结构。当P2O5或Al2O3质量分数一定时随着碱度的提高熔渣的黏度降低;当碱度或P2O5质量分数一定时熔渣的黏度随Al2O3质量分数的增加而增大;当碱度或Al2O3质量分数一定时黏度均随着P2O5质量分数的增加而提高。  相似文献   

16.
高品质GCr15轴承钢二次精炼过程中夹杂物的演变规律   总被引:1,自引:1,他引:0  
采用FE-SEM/EDS研究了转炉流程生产的GCr15轴承钢LF、RH精炼过程中夹杂物的演变规律,分析了其演变机理。结果表明:钢中复合夹杂物的演变规律可归纳为:Al2O3→MgO·Al2O3→(CaO-MgO-Al2O3-(CaS))复合氧化物夹杂和Al2O3→(Al2O3-MnS)→(Al2O3-MnS-Ti(C,N))复合氧硫碳氮物夹杂2种方式。LF精炼过程脱硫作用明显,钢中的硫化物夹杂数量大幅减少。LF精炼初期钢中主要是MnS、Al2O3、TiN的单相夹杂物。LF精炼结束后钢中的夹杂物演变为Al2O3为核心外包氧化物及MnS、TiN、Ti(C,N)、CaS的复合夹杂物。精炼渣中的CaO和耐火材料中的MgO经还原后与钢中溶解氧反应导致LF精炼结束时D类夹杂物增加。RH及软吹处理进一步强化了去除钢中的硫化物,但D类及其与A、T类复合的夹杂物含量增加。在LF阶段,夹杂物尺寸主要集中在1~3μm范围内,到RH阶段,夹杂物尺寸则主要集中分布在小于1μm的粒度范围。最大夹杂物尺寸由10.79μm降到5.68μm,单位面积夹杂个数由372个/mm2降到258个/mm2。RH及软吹处理有效地降低了钢中大于3μm的夹杂物。  相似文献   

17.
根据热力学计算,结合生产过程实际,研究了Si脱氧条件下304奥氏体不锈钢在LF精炼、连铸过程夹杂物的变化规律.结果表明,钢水中主要形成CaO-Al2O3-SiO2类复合夹杂物,钢水中Al含量随Si含量的降低逐渐减小.当精炼渣碱度R=1.5时,随精炼、连铸过程的进行,复合夹杂物中Al2O3含量逐渐减少,CaO,SiO2含量逐渐增加.终点铸坯夹杂物成分为30%~35%CaO,20%~27%Al2O3,25%~30%SiO2,其他成分含量较少.终点铸坯夹杂物略显碱性,变形能力稍弱.  相似文献   

18.
The mass transfer among the multiphase interactions among the steel, slag, lining refractory, and nonmetallic inclusions during the refining process of a bearing steel was studied using laboratory experiments and numerical kinetic prediction. Experiments on the system with and without the slag phase were carried out to evaluate the influence of the refractory and the slag on the mass transfer. A mathematical model coupled the ion and molecule coexistence theory, coupled-reaction model, and the surface renewal theory was established to predict the dy-namic mass transfer and composition transformation of the steel, the slag, and nonmetallic inclusions in the steel. During the refining process, Al2O3 inclusions transformed into MgO inclusions owing to the mass transfer of [Mg] at the steel/refractory interface and (MgO) at the slag/re-fractory interface. Most of the aluminum involved in the transport entered the slag and a small part of the aluminum transferred to lining re-fractory, forming the Al2O3 or MgO·Al2O3. The slag had a significant acceleration effect on the mass transfer. The mass transfer rate (or the re-action rate) of the system with the slag was approximately 5 times larger than that of the system without the slag. In the first 20 min of the re-fining, rates of magnesium mass transfer at the steel/inclusion interface, steel/refractory interface, and steel/slag interface were x, 1.1x, and 2.2x, respectively. The composition transformation of inclusions and the mass transfer of magnesium and aluminum in the steel were predicted with an acceptable accuracy using the established kinetic model.  相似文献   

19.
在实验室条件下采用钼丝挂渣法测量熔渣发泡高度,以相对发泡高度作为衡量指标,结合理论分析,系统研究了高碱度合成精炼渣的泡沫化性能.结果表明:熔渣相对发泡高度随着黏度的增大、表面张力和密度的减小而增大.在精炼渣成分一定时,随温度升高和吹气量增加,熔渣相对发泡高度都有先增加后降低的趋势.具有较好泡沫化性能的精炼渣组成范围是:ω(CaO)/ω(SiO_2)为5~8,ω(Al_2O_3):27%,ω(CaF_2)为3%~6%,ω(MgO)=8%,ω(FeO)<0.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号