首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
大气压等离子体射流可以在空气环境中产生等离子体羽.与通常产生的锥状等离子体羽不同,利用低频偏置正弦电压激励大气压氩气等离子体射流,等离子体羽呈现周期性突起.利用电学、光学及光谱学手段对突起状等离子体羽的放电特性及其形成机制进行了研究.结果表明,等离子体羽长度随着气体流量增大而增大.放电的波形表明每一个电压周期存在一次放电,且它出现在电压的负半周期.通过高速影像发现,突起状等离子体羽对应沿着气流传播的负流光.射流喷口附近存在周期性的强放电,它为下游提供了空间规律性分布的活性粒子.该活性粒子能增强流光的传播,表现为等离子体子弹的直径增大,因此形成空间周期性的突起.利用光学发射谱,测量了电子激发温度的空间分布及平均电子激发温度随着气体流量的变化关系,并对这种变化趋势进行了定性解释.  相似文献   

2.
等离子体射流产生的众多活性粒子中,氧原子是化学活性非常强的氧化剂,也是生成其他含氧活性粒子的基础,因此确定氧原子浓度及其时空分布对提高等离子体射流的应用效率具有重要意义.针对于此,本工作利用单电极等离子体射流产生了实心结构的等离子体羽,利用高分辨光谱仪采集了放电的发射光谱.结果表明,等离子体羽中确实含有氧原子等活性粒子.采用光化线强度法通过比较氧原子谱线(777.4 nm)和氩原子谱线(750.4 nm)的强度比研究了等离子体中氧原子浓度.结果表明:等离子体羽中的氧原子浓度随着距离喷口距离的增加先减小后增大;固定其他实验参数的情况下,氧原子浓度随着外加电压峰值和工作气体流量的增加而增大;当工作气体中掺入空气后,等离子体羽中氧原子浓度随着空气体积分数的增加先增大后减小.结合放电机制,对以上实验现象进行了定性分析,所得结果对于大气压等离子体射流的应用具有重要意义.  相似文献   

3.
本文采用了棒-环结构的氩气等离子体射流装置,在正弦波、三角波和方波三种激励下均产生了锥形的大气压等离子体羽.利用电学方法,发现三种波形激励的放电,其放电脉冲均出现在电压正半周期内,而负半周期内没有放电脉冲.并且放电脉冲个数均随着电压峰值的增加而增加.对于多脉冲放电,正弦波和三角波激励的放电脉冲强度在电压上升沿内逐渐增加,而方波激励的脉冲强度在电压的正半周期内保持不变.此外,方波激励的相邻放电脉冲的时间间隔要比正弦波和三角波的大.利用高速影像研究发现正弦波和三角波激励的等离子体羽均由击穿阶段(流光发展)和余辉阶段组成.通过分析放电过程,对以上现象进行了定性解释.  相似文献   

4.
采用线-板放电装置,通过氩气的流动,在直流电压驱动下产生了大面积的大气压均匀刷形等离子体羽,并利用光学方法对其放电特性进行了研究.结果表明,虽然外加电压是直流形式,但放电电流和放电发光是周期性的脉冲信号.利用光电倍增管测量了光脉冲的频率,发现放电频率随着电压或气流的增加而增大.对等离子体羽的发光信号沿着线电极方向和沿着气流方向分别进行了空间分辨测量,发现刷型等离子体羽由微放电构成.微放电沿着线电极方向在时间上是随机出现的,而沿着气流方向以"等离子体子弹"传播.利用光谱仪测量了放电的发射光谱,并且通过发射光谱计算了分子振动温度.研究发现,分子振动温度随着电压增加而增加,随着气流的增加而减小.  相似文献   

5.
对大气压环境中偏置正弦电压激励的氩气等离子体射流进行了研究. 结果表明,随着偏置电压从负值增加到正值,所产生的羽从实心过渡到空心. 利用电学和光学手段对实心羽和空心羽的放电特性进行了研究,发现对于这2种羽,每个电压周期都只有单个放电脉冲. 利用快速摄影,看到“胖”定向子弹在实心羽中传播,其中涉及负流光机制. 而空心羽中涉及正流光机制,它表现为从棒电极端开始的定向流光,随后逐渐演变成在气流周边传播的分叉流光. 利用光谱学手段,研究了距离管口不同位置处的电子温度. 基于潘宁电离和残留负离子的作用,对这2种羽的产生机制进行了解释.  相似文献   

6.
大气压等离子体射流可以在开放的空气环境中产生富含多种活性粒子的低温等离子体羽,在材料合成、表面改性、生物医疗、环境保护等多种领域具有广泛的应用前景. 等离子体羽的形貌与活性粒子的时空分布有关,研究其形貌对等离子体射流的应用具有重要意义.针对目前等离子体形貌还不够丰富的问题,本文利用氩气等离子体射流,通过改变外加电压参数(电压峰值、驱动频率和偏置值)产生了几种形貌的等离子体羽(弥散圆锥状、丝加晕形、念珠串状和空心锥状),从而进一步丰富了等离子体羽的形貌.通过对比放电的电压和发光信号波形,发现除丝加晕形等离子体羽外,其他3种等离子体羽在每个外加电压周期均放电1次.不同的是,弥散圆锥状和念珠串状等离子体羽的放电出现在电压负半周期,为负放电.而空心锥状等离子体羽的放电出现在外加电压正半周期,为正放电.丝加晕形等离子体羽每个电压周期存在1个负放电和1个正放电.此外,还利用高速成像设备对这几种形貌等离子体羽的时空演化进行了研究.相关结果表明,负放电对应负流光的传播过程,而正放电对应正流光的过程.视觉上不同形貌的等离子体羽是正流光、负流光及其组合时间叠加的结果.本文的结果对大气压等离子体射流中等离子体羽形貌的深入研究及流光动力学的进一步发展均具有重要价值.  相似文献   

7.
在固定脉冲频率及占空比的情况下,研究脉冲电压对大气压脉冲放电等离子体射流长度的影响。分析脉冲放电的电流电压波形、等离子体射流的光发射强度的时空演化过程以及等离子体子弹速度的变化。结果表明:等离子体子弹随脉冲电压的增大由单子弹变为双子弹再变为单子弹;射流长度相应地先增长然后趋于稳定,射流长度由增长转变为稳定的转变电压正好处于形成双子弹的脉冲电压附近。  相似文献   

8.
利用针板介质阻挡放电装置,采用光学方法对大气压长间隙空气放电的等离子体羽特性和等离子体子弹速度进行了研究.结果表明:改变外加电压等离子体羽长度会发生变化.利用光电倍增管采集光信号对等离子体子弹速度进行了研究,发现等离子体子弹的速度与针板间距、外加电压以及针尖直径有关.利用光谱仪采集放电的发射光谱,发现放电等离子体中存在OH自由基、氧原子等多种活性粒子,表明该放电在生物医疗领域具有重要的应用价值.  相似文献   

9.
利用空心针-板电极装置,在大气压空气中产生了直流激励的均匀氩气等离子体羽.电学和光学测量结果表明,虽然采用直流电源驱动,但放电为周期性的脉冲.每个脉冲对应一个等离子体子弹从空心针向着阴极的传播过程.对放电特性随放电电压、电极间距和氩气流量的变化关系进行了研究.发现放电频率随电压的升高而增大,随距离和氩气流量的减小而增大.以直流空心针-板电极作为放电单元构成阵列,得到了较大体积的大气压均匀放电.  相似文献   

10.
为了研究电场分布对射流等离子体生成特性的影响,运用有限元分析软件AnsoftMaxwell,对柱-环、柱-三环、柱-螺旋管、柱-管4种不同射流等离子体电极结构下的电场强度及均匀度等参数进行了电场仿真计算,模拟起始放电前不同电极结构下的电场分布情况.分析电场强度及均匀度等参数对射流等离子体生成的影响,结合相应的实验进行验证.仿真和实验结果表明:4种电极结构的最大电场强度差别不大,起始放电电压大致相同;柱-环电极电场分布最不均匀,容易向弧光放电转化;柱-管电极电场分布最均匀,强电场区域大,易于生成大量稳定的辉光放电等离子体.因此,电场分布越均匀、强电场区域越大的电极结构有利于抑制辉光放电向弧光放电的转变,有利于射流辉光等离子体的生成.  相似文献   

11.
在介质阻挡放电过程中,由于离子对电极表面不断轰击产生热量,电极温度会有所升高,放电光电特性也会随之变化.通过改变外加电压和等离子体放电时间发现,电极温度随着外加电压的增加和等离子体放电时间的延长而增加,并且高压电极的温度比接地电极的温度增加得更快.延长等离子体放电时间发现,输入功率、放电脉冲数目和光谱谱线相对强度都在上升,电流峰值却在下降.所得研究结果为今后介质阻挡放电光电特性研究提供了时间上的参考性,具有重要的研究意义.  相似文献   

12.
利用四电极结构的介质阻挡放电(DBD)装置,在大气压环境中,产生了一个弥散的氩气等离子体羽.结果表明:随着交流电压峰值和氩气流量的增大,等离子体羽的长度变长,且在此过程中氩原子谱线强度也增大.电压电流波形表明放电既可以出现在电压的上升沿也可以出现在其下降沿.利用高速摄像不断缩短曝光时间,发现正负放电存在明显差别.正放电对应分叉的放电丝,而负放电却是均匀弥散的.实际上,正放电的分叉丝和负放电的弥散背景分别对应着正流光放电和负流光放电.讨论了分叉丝及弥散背景的形成机制.这些研究结果对于大尺度等离子体羽的产生及流光动力学行为的深入研究具有重要意义.  相似文献   

13.
采用组合电极结构产生常压等离子体射流,对直流(DC)脉冲辅助射频放电进行试验研究.在每个射频脉冲产生之前,引入一个微秒级DC脉冲放电,通过采集放电电流和电压曲线以及时间分辨放电图像,研究这种组合放电的电学特性及时空分布.结果表明,在射频放电脉冲中间引入微秒级DC脉冲放电之后,使射频放电脉冲起辉电压从3.86kV降低到1.61kV,提高了常压脉冲射频放电的稳定性,可为常压射频放电在工业上的连续化应用提供技术依据.  相似文献   

14.
为了明确高频交流电场对火焰燃烧的影响机理,分别选取了初始压力为0.1、0.3、0.5 MPa的CH_4/空气和初始压力为0.1MPa的CH_4/O_2/Ar预混稀燃气,通过在定容燃烧弹内的网状电极上加载幅值为5kV、频率为15kHz的高频交流电场,对比分析了在高频交流电场下两种预混气火焰传播特性的异同,以及不同初始压力下CH_4/空气火焰传播特性的异同。结果表明:加载高频交流电场后,随着初始压力的增大,电场对CH_4/空气火焰面发展的影响程度逐渐减小,平均火焰传播速度增大率逐渐减小;随着过量空气系数的增大,加载电场后对CH_4/空气火焰的拉伸作用逐渐减小,对CH_4/O_2/Ar火焰的拉伸作用逐渐增大,CH_4/空气的平均火焰传播速度增大率逐渐减小,CH_4/O_2/Ar的平均火焰传播速度增大率逐渐增大,电场对两种混合气火焰传播的影响趋向相同。这说明在CH_4/空气预混稀燃气中,高频交流电场影响火焰燃烧的电化学效应中电子与燃烧产物分子的振动碰撞及其后续的链式反应占据主导。在不同初始压力下,平均火焰传播速度增大率随着简化场的增大呈线性增大,说明利用简化场来衡量高频交流电场电化学效应的强弱是可行的。  相似文献   

15.
等离子体射流具有广泛的应用前景。建立了轴对称等离子体射流的模型,得出层流状态下等离子体射流的长度与流量成正比。采用Ne、He、Ar在大气压下用介质阻挡放电的手段得到了等离子体射流,发现层流状态下等离子体射流长度与模型结论一致,但是随着激励电压的升高和气体流量的增大,等离子体射流会发生从辉光放电到丝状放电、从层流到湍流的转捩,射流长度会先增大后减小;工作气体的不同对等离子体射流的性质也有重要影响。  相似文献   

16.
采用脉冲激光烧蚀技术,在引入垂直于烧蚀羽辉轴线外加直流电场的前后,分别在1,3,5Pa的室温氩气环境下沉积制备了一系列纳米硅晶薄膜,其中衬底与羽辉轴线平行.扫描电子显微镜(SEM)的检测结果表明,在同一直流电压下制备的纳米Si晶粒平均尺寸和面密度均随气体压强的增加而增大.保持气压不变,引入电场后所制备的纳米Si晶粒平均尺寸相对于无外加电场时增大,而面密度减小.结合纳米晶粒气相成核生长动力学,对实验结果进行了定性分析.  相似文献   

17.
用一维粒子模拟研究了超短激光脉冲在非均匀等离子体中传输时产生的光孤子结构和脉冲的分裂现象.比较了不同的激光强度和等离子体密度梯度对脉冲传播的影响.研究表明:超短激光脉冲在非均匀等离子体中传播时能产生传输的类孤子结构;随着入射激光强度的增大,等离子体对激光的反射密度反而减小,孤子脉冲的平均传播速度也减小;随着等离子体密度梯度的增大,等离子体对激光的反射密度变大,孤子脉冲的平均传播速度减小,孤子脉冲传播到高密度梯度的等离子体区域时,发生了全反射,反射的孤子脉冲在传播过程中由于能量的损失,低频脉冲被等离子体俘获,形成后孤子,而高频脉冲则继续传播,使得脉冲分裂.  相似文献   

18.
通过解析和数值方法研究了相对论长脉冲激光在非均匀等离子体中的传播.首先,得到了激光脉冲在均匀等离子体中传播的解析解,并通过数值模拟进行了验证.结果表明,长脉冲激光在均匀等离子体中传播时,脉冲宽度的变化不影响激光强度空间分布的变化;然而,激光脉冲的强度和电子密度的空间分布可以通过调制等离子体频率来调节.在具有高斯型密度分布的非均匀等离子体中,随着高斯型密度分布振幅的增大,激光脉冲的强度逐渐增强,激光脉冲的横向分布逐渐呈现出尖锐状分布;在具有反高斯型密度分布的非均匀等离子体中,随着反高斯型密度分布振幅的减小,激光脉冲的强度逐渐减小,激光脉冲呈现横向平台状分布.因此,等离子体的非均匀性对长脉冲激光的传播有着重要的影响.  相似文献   

19.
高环境压力下幂律流体射流液滴粒度特性试验   总被引:1,自引:0,他引:1  
基于自行搭建的射流系统和定容燃烧弹系统,采用三维相位多普勒技术,实现对幂律流体圆柱射流在封闭空间内不同工况下破碎液滴粒度场分布规律的测量.结果表明,对于同一种幂律流体,在相同的喷射压力、环境压力和喷嘴结构参数下,索特平均直径(SMD)随射流轴向位置的增大而减小;在同一轴向位置,SMD基本沿径向两侧呈对称分布,越远离中心SMD越大,射流速度越大,这种对称分布现象越明显;控制其他参数相同,SMD随着射流速度的增大而逐渐变小;随着环境压力的增大,SMD逐渐减小;喷嘴其他参数相同,SMD随着喷嘴直径的减小而逐渐减小;对于不同的幂律流体,黏度越大,SMD越大.试验结果与不稳定性理论分析所给出的幂律流体射流破碎规律是一致的.  相似文献   

20.
利用SST k-ω湍流模型对仿生矩形射流表面的减阻特性进行数值模拟,解释了射流表面减小摩擦阻力的原因及对近壁区边界层的控制行为.结果表明,射流孔面积相等时,射流孔与射流表面沿展向长度的比值越大,减阻效果越好.当其它因素不变时,随着射流速度的增大减阻率逐渐增大,随着射流流量的增大减阻率逐渐增大,最大减阻率为35.97%.射流表面对边界层的控制行为表现为主流场近壁区的剪切流动遇到射流的阻抗,在射流孔的背流面形成逆流区,逆流在边界层底层产生的剪应力与主流场方向相反;同时在射流孔下游产生反向旋转涡对并在近壁面诱导出二次涡,相当于在高速流体与壁面之间产生润滑带,使边界层黏性底层厚度增大,速度梯度减小,摩擦阻力减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号