首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The surface of Saturn's largest satellite--Titan--is largely obscured by an optically thick atmospheric haze, and so its nature has been the subject of considerable speculation and discussion. The Huygens probe entered Titan's atmosphere on 14 January 2005 and descended to the surface using a parachute system. Here we report measurements made just above and on the surface of Titan by the Huygens Surface Science Package. Acoustic sounding over the last 90 m above the surface reveals a relatively smooth, but not completely flat, surface surrounding the landing site. Penetrometry and accelerometry measurements during the probe impact event reveal that the surface was neither hard (like solid ice) nor very compressible (like a blanket of fluffy aerosol); rather, the Huygens probe landed on a relatively soft solid surface whose properties are analogous to wet clay, lightly packed snow and wet or dry sand. The probe settled gradually by a few millimetres after landing.  相似文献   

2.
The irreversible conversion of methane into higher hydrocarbons in Titan's stratosphere implies a surface or subsurface methane reservoir. Recent measurements from the cameras aboard the Cassini orbiter fail to see a global reservoir, but the methane and smog in Titan's atmosphere impedes the search for hydrocarbons on the surface. Here we report spectra and high-resolution images obtained by the Huygens Probe Descent Imager/Spectral Radiometer instrument in Titan's atmosphere. Although these images do not show liquid hydrocarbon pools on the surface, they do reveal the traces of once flowing liquid. Surprisingly like Earth, the brighter highland regions show complex systems draining into flat, dark lowlands. Images taken after landing are of a dry riverbed. The infrared reflectance spectrum measured for the surface is unlike any other in the Solar System; there is a red slope in the optical range that is consistent with an organic material such as tholins, and absorption from water ice is seen. However, a blue slope in the near-infrared suggests another, unknown constituent. The number density of haze particles increases by a factor of just a few from an altitude of 150 km to the surface, with no clear space below the tropopause. The methane relative humidity near the surface is 50 per cent.  相似文献   

3.
One of Titan's most intriguing attributes is its copious but featureless atmosphere. The Voyager 1 fly-by and occultation in 1980 provided the first radial survey of Titan's atmospheric pressure and temperature and evidence for the presence of strong zonal winds. It was realized that the motion of an atmospheric probe could be used to study the winds, which led to the inclusion of the Doppler Wind Experiment on the Huygens probe. Here we report a high resolution vertical profile of Titan's winds, with an estimated accuracy of better than 1 m s(-1). The zonal winds were prograde during most of the atmospheric descent, providing in situ confirmation of superrotation on Titan. A layer with surprisingly slow wind, where the velocity decreased to near zero, was detected at altitudes between 60 and 100 km. Generally weak winds (approximately 1 m s(-1)) were seen in the lowest 5 km of descent.  相似文献   

4.
Griffith CA  Lora JM  Turner J  Penteado PF  Brown RH  Tomasko MG  Doose L  See C 《Nature》2012,486(7402):237-239
Titan has clouds, rain and lakes--like Earth--but composed of methane rather than water. Unlike Earth, most of the condensable methane (the equivalent of 5?m depth globally averaged) lies in the atmosphere. Liquid detected on the surface (about 2?m deep) has been found by radar images only poleward of 50° latitude, while dune fields pervade the tropics. General circulation models explain this dichotomy, predicting that methane efficiently migrates to the poles from these lower latitudes. Here we report an analysis of near-infrared spectral images of the region between 20°?N and 20°?S latitude. The data reveal that the lowest fluxes in seven wavelength bands that probe Titan's surface occur in an oval region of about 60?×?40?km(2), which has been observed repeatedly since 2004. Radiative transfer analyses demonstrate that the resulting spectrum is consistent with a black surface, indicative of liquid methane on the surface. Enduring low-latitude lakes are best explained as supplied by subterranean sources (within the last 10,000 years), which may be responsible for Titan's methane, the continual photochemical depletion of which furnishes Titan's organic chemistry.  相似文献   

5.
In situ measurements of the physical characteristics of Titan's environment   总被引:1,自引:0,他引:1  
On the basis of previous ground-based and fly-by information, we knew that Titan's atmosphere was mainly nitrogen, with some methane, but its temperature and pressure profiles were poorly constrained because of uncertainties in the detailed composition. The extent of atmospheric electricity ('lightning') was also hitherto unknown. Here we report the temperature and density profiles, as determined by the Huygens Atmospheric Structure Instrument (HASI), from an altitude of 1,400 km down to the surface. In the upper part of the atmosphere, the temperature and density were both higher than expected. There is a lower ionospheric layer between 140 km and 40 km, with electrical conductivity peaking near 60 km. We may also have seen the signature of lightning. At the surface, the temperature was 93.65 +/- 0.25 K, and the pressure was 1,467 +/- 1 hPa.  相似文献   

6.
Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species (including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial 36Ar, and the radiogenic isotope 40Ar, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.  相似文献   

7.
Biemann K 《Nature》2006,444(7119):E6; discussion E6-E6; discussion E7
On 14 January 2005, the Huygens probe entered the atmosphere of Titan after a seven-year interplanetary flight as part of the Cassini mission to Saturn. Huygens carried, among other instruments, an aerosol collection and pyrolysis (ACP) device. Its designers, Isra?l et al., now claim to have detected complex organic matter in two aerosol samples collected at different altitudes (130-35 km and 25-20 km, respectively), on the basis of their detection of ammonia (NH3) and hydrogen cyanide (HCN) when the sample oven was heated to 600 degrees C. However, the authors' remarkable conclusions, which would have far-reaching consequences for our understanding of the chemical environment prevailing on Saturn's largest moon, are not supported by their limited data.  相似文献   

8.
Titan's atmosphere is composed primarily of N2 with a little methane and other organic molecules. But theoretical models suggest that the initial form of nitrogen in Titan's atmosphere may have been NH3. We have investigated the possible importance of strong shocks produced during high-velocity impacts accompanying the late states of accretion as a method for converting NH3 to N2. To simulate the effects of an impact in Titan's atmosphere we have used the focused beam of a high-power laser, a method that has been shown to simulate shock phenomena. For mixtures of 10%, 50% and 90% NH3 (balance CH4) we obtained yields of 0.25, 1, and 6 x 10(17) molecules of N2 per joule, respectively. We also find that the yield of HCN is comparable to that for N2. In addition, several other hydrocarbons are produced, many with yields in excess of theoretical high-temperature-equilibrium models. The above yields, when combined with models of the satellite's accretion, result in a total N2 production comparable to that present in Titan's atmosphere and putative ocean.  相似文献   

9.
Biemann K 《Nature》2006,444(7118):E6; disccussion E6-E6; disccussion E7
On 14 January 2005, the Huygens probe entered the atmosphere of Titan after a seven-year interplanetary flight as part of the Cassini mission to Saturn. Huygens carried, among other instruments, an aerosol collection and pyrolysis (ACP) device. Its designers, Isra?l et al., now claim to have detected complex organic matter in two aerosol samples collected at different altitudes (130-35 km and 25-20 km, respectively), on the basis of their detection of ammonia (NH3) and hydrogen cyanide (HCN) when the sample oven was heated to 600 degrees C. However, the authors' remarkable conclusions, which would have far-reaching consequences for our understanding of the chemical environment prevailing on Saturn's largest moon, are not supported by their limited data.  相似文献   

10.
Titan, the largest moon of Saturn, is the only satellite in the Solar System with a substantial atmosphere. The atmosphere is poorly understood and obscures the surface, leading to intense speculation about Titan's nature. Here we present observations of Titan from the imaging science experiment onboard the Cassini spacecraft that address some of these issues. The images reveal intricate surface albedo features that suggest aeolian, tectonic and fluvial processes; they also show a few circular features that could be impact structures. These observations imply that substantial surface modification has occurred over Titan's history. We have not directly detected liquids on the surface to date. Convective clouds are found to be common near the south pole, and the motion of mid-latitude clouds consistently indicates eastward winds, from which we infer that the troposphere is rotating faster than the surface. A detached haze at an altitude of 500 km is 150-200 km higher than that observed by Voyager, and more tenuous haze layers are also resolved.  相似文献   

11.
Methane hydrate is thought to have been the dominant methane-containing phase in the nebula from which Saturn, Uranus, Neptune and their major moons formed. It accordingly plays an important role in formation models of Titan, Saturn's largest moon. Current understanding assumes that methane hydrate dissociates into ice and free methane in the pressure range 1-2 GPa (10-20 kbar), consistent with some theoretical and experimental studies. But such pressure-induced dissociation would have led to the early loss of methane from Titan's interior to its atmosphere, where it would rapidly have been destroyed by photochemical processes. This is difficult to reconcile with the observed presence of significant amounts of methane in Titan's present atmosphere. Here we report neutron and synchrotron X-ray diffraction studies that determine the thermodynamic behaviour of methane hydrate at pressures up to 10 GPa. We find structural transitions at about 1 and 2 GPa to new hydrate phases which remain stable to at least 10 GPa. This implies that the methane in the primordial core of Titan remained in stable hydrate phases throughout differentiation, eventually forming a layer of methane clathrate approximately 100 km thick within the ice mantle. This layer is a plausible source for the continuing replenishment of Titan's atmospheric methane.  相似文献   

12.
Hunten DM 《Nature》2006,443(7112):669-670
Saturn's largest satellite, Titan, has a dense atmosphere of nitrogen with a few per cent of methane. At visible wavelengths its surface is hidden by dense orange-brown smog, which is produced in the stratosphere by photochemical reactions following the dissociation of methane by solar ultraviolet light. The most abundant of the products of these reactions is ethane, and enough of it should have been generated over the life of the Solar System to form a satellite-wide ocean one kilometre deep. Radar observations have found specular reflections in 75 per cent of the surface spots observed, but optical searches for a sun-glint off an ocean have been negative. Here I explain the mysterious absence or rarity of liquid ethane: it condenses onto the smog particles, instead of into liquid drops, at the cold temperatures in Titan's atmosphere. This dusty combination of smog and ethane, forming deposits several kilometres thick on the surface, including the observed dunes and dark areas, could be named 'smust'. This satellite-wide deposit replaces the ocean long thought to be an important feature of Titan.  相似文献   

13.
Aerosols in Titan's atmosphere play an important role in determining its thermal structure. They also serve as sinks for organic vapours and can act as condensation nuclei for the formation of clouds, where the condensation efficiency will depend on the chemical composition of the aerosols. So far, however, no direct information has been available on the chemical composition of these particles. Here we report an in situ chemical analysis of Titan's aerosols by pyrolysis at 600 degrees C. Ammonia (NH3) and hydrogen cyanide (HCN) have been identified as the main pyrolysis products. This clearly shows that the aerosol particles include a solid organic refractory core. NH3 and HCN are gaseous chemical fingerprints of the complex organics that constitute this core, and their presence demonstrates that carbon and nitrogen are in the aerosols.  相似文献   

14.
Tobie G  Lunine JI  Sotin C 《Nature》2006,440(7080):61-64
Saturn's largest satellite, Titan, has a massive nitrogen atmosphere containing up to 5 per cent methane near its surface. Photochemistry in the stratosphere would remove the present-day atmospheric methane in a few tens of millions of years. Before the Cassini-Huygens mission arrived at Saturn, widespread liquid methane or mixed hydrocarbon seas hundreds of metres in thickness were proposed as reservoirs from which methane could be resupplied to the atmosphere over geologic time. Titan fly-by observations and ground-based observations rule out the presence of extensive bodies of liquid hydrocarbons at present, which means that methane must be derived from another source over Titan's history. Here we show that episodic outgassing of methane stored as clathrate hydrates within an icy shell above an ammonia-enriched water ocean is the most likely explanation for Titan's atmospheric methane. The other possible explanations all fail because they cannot explain the absence of surface liquid reservoirs and/or the low dissipative state of the interior. On the basis of our models, we predict that future fly-bys should reveal the existence of both a subsurface water ocean and a rocky core, and should detect more cryovolcanic edifices.  相似文献   

15.
Rannou P  Hourdin F  McKay CP 《Nature》2002,418(6900):853-856
Titan, the largest moon of Saturn, is the only satellite in the Solar System with a dense atmosphere. Titan's atmosphere is mainly nitrogen with a surface pressure of 1.5 atmospheres and a temperature of 95 K (ref. 1). A seasonally varying haze, which appears to be the main source of heating and cooling that drives atmospheric circulation, shrouds the moon. The haze has numerous features that have remained unexplained. There are several layers, including a 'polar hood', and a pronounced hemispheric asymmetry. The upper atmosphere rotates much faster than the surface of the moon, and there is a significant latitudinal temperature asymmetry at the equinoxes. Here we describe a numerical simulation of Titan's atmosphere, which appears to explain the observed features of the haze. The critical new factor in our model is the coupling of haze formation with atmospheric dynamics, which includes a component of strong positive feedback between the haze and the winds.  相似文献   

16.
Pinto JP  Lunine JI  Kim SJ  Yung YL 《Nature》1986,319(6052):388-390
A value of 1.7 x 10(-3) has been reported for the ratio of CH3D to CH4 in the stratosphere of the saturnian moon Titan. A lower value of 6 x 10(-4) for this ratio in the deeper part of Titan's atmosphere was reported by de Bergh et al. For comparison we note that the CH3D to CH4 ratio on Saturn and Jupiter is 8.7 x 10(-5) and 6.7 x 10(-5), respectively. We estimate the uncertainties in all these observations and data reduction to be about a factor of 2. Despite these uncertainties it appears that Titan's atmosphere is enriched in deuterium by a factor of > or = 3 relative to Jupiter and Saturn. Potential causative factors examined here for this enrichment are condensation to form tropospheric methane clouds, fractionation occurring over a hypothetical CH4-C2H6 ocean and between the ocean and the clathrate crust beneath, fractionation which occurred during the formation of Titan and fractionation occurring as a result of the evolution of Titan's atmosphere. We conclude that the greater part of the observed fractionation is probably derived from the formation of Titan and the subsequent evolution of Titan's atmosphere driven by photochemistry.  相似文献   

17.
The identification of liquid ethane in Titan's Ontario Lacus   总被引:1,自引:0,他引:1  
Titan was once thought to have global oceans of light hydrocarbons on its surface, but after 40 close flybys of Titan by the Cassini spacecraft, it has become clear that no such oceans exist. There are, however, features similar to terrestrial lakes and seas, and widespread evidence for fluvial erosion, presumably driven by precipitation of liquid methane from Titan's dense, nitrogen-dominated atmosphere. Here we report infrared spectroscopic data, obtained by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft, that strongly indicate that ethane, probably in liquid solution with methane, nitrogen and other low-molecular-mass hydrocarbons, is contained within Titan's Ontario Lacus.  相似文献   

18.
Titan is the only satellite in our Solar System with a dense atmosphere. The surface pressure is 1.5 bar (ref. 1) and, similar to the Earth, N2 is the main component of the atmosphere. Methane is the second most important component, but it is photodissociated on a timescale of 10(7) years (ref. 3). This short timescale has led to the suggestion that Titan may possess a surface or subsurface reservoir of hydrocarbons to replenish the atmosphere. Here we report near-infrared images of Titan obtained on 26 October 2004 by the Cassini spacecraft. The images show that a widespread methane ocean does not exist; subtle albedo variations instead suggest topographical variations, as would be expected for a more solid (perhaps icy) surface. We also find a circular structure approximately 30 km in diameter that does not resemble any features seen on other icy satellites. We propose that the structure is a dome formed by upwelling icy plumes that release methane into Titan's atmosphere.  相似文献   

19.
Saturn's moon Titan shows landscapes with fluvial features suggestive of hydrology based on liquid methane. Recent efforts in understanding Titan's methane hydrological cycle have focused on occasional cloud outbursts near the south pole or cloud streaks at southern mid-latitudes and the mechanisms of their formation. It is not known, however, if the clouds produce rain or if there are also non-convective clouds, as predicted by several models. Here we show that the in situ data on the methane concentration and temperature profile in Titan's troposphere point to the presence of layered optically thin stratiform clouds. The data indicate an upper methane ice cloud and a lower, barely visible, liquid methane-nitrogen cloud, with a gap in between. The lower, liquid, cloud produces drizzle that reaches the surface. These non-convective methane clouds are quasi-permanent features supported by the global atmospheric circulation, indicating that methane precipitation occurs wherever there is slow upward motion. This drizzle is a persistent component of Titan's methane hydrological cycle and, by wetting the surface on a global scale, plays an active role in the surface geology of Titan.  相似文献   

20.
运用耦合簇理论CCSD方法和全组态CBS-Q理论对文献(Planet Space Sci,2003,51:1003-1011.)提出的Titan大气中可能生成NH3的6个链式反应进行了热化学计算和分析.发现:(a)反应(4)-(6)在Titan环境中反应能够正向进行,具有较大的自发反应趋势,反应(2)和(3)不具有反应自发性,在低温下自发反应可能性更低;(b)反应(2)的转变温度为955.14K,高于这个温度反应才有可能正向进行;(c)可以认为这6个链式反应在Titan大气的低温环境中自然合成NH3是不太可能的;(d)耦合簇理论CCSD方法和全组态CBS-Q理论的计算结果相吻合,互相印证了结论的可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号