首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
振动可以减小摩擦,利用自制的旋转激励环境下摩擦力测试实验装置研究了旋转激励振动载荷的幅值和频率对不同材料平面摩擦副摩擦力的影响。实验表明:旋转激励振动载荷降低了平面摩擦副的摩擦系数。相同激振频率下,随着名义振幅的增大,摩擦系数不断减小,且二者呈现近似线性关系。相同名义振幅条件下,Q235A-Q235A平面摩擦副摩擦系数减小率最大,Q235A-花岗岩平面摩擦副摩擦系数减小率次之,Q235A-400目砂纸平面摩擦副摩擦系数减小率最小。相同名义振幅下,随着激振频率的增大,摩擦系数亦呈现减小的趋势;在激振频率为15 Hz以前,摩擦系数减小速率较快,当激振频率超过15Hz后,摩擦系数减小速率变慢。  相似文献   

2.
以振动沉桩机为例,研究了振动摩擦在沉拔桩机这一典型机械中的应用.建立了非线性动力学模型,采用龙格库塔法对振动沉桩机进行了数值仿真,得到了系统的动力学特性.仿真结果表明:随着激振力幅值和频率的增大,桩的振幅有一定的增大;随着激振力幅值的减小,桩的振幅有一定减小;随着激振力频率的减小,桩的振幅变化不大;改变系统刚度,桩的振幅有明显变化.  相似文献   

3.
综合考虑间隙、非线性刚度、摩擦及碰撞阻尼,建立了铰链等效模型,并基于该等效模型建立了含铰可展桁架结构动力学模型。根据铰链的变拓扑结构特点,提出了适用于解决时变非线性动力学问题的附加力方法,对多自由度平面和空间可展桁架进行了动力学仿真,得到了可展桁架的动力学响应。通过设置不同铰链参数和外部激振条件,分析了不同间隙、激振力、摩擦力对含铰可展桁架频率和幅值的影响,结果表明:间隙和激振力增大可导致桁架固有频率降低,响应幅值增大;摩擦力增大可提高桁架的固有频率。多单元桁架伸展臂的动力学试验结果验证了文中建立的含铰可展桁架动力学模型的正确性。  相似文献   

4.
提出了评价压电陶瓷激振信号的线性度指标,并基于自主研发的压电陶瓷激励反馈系统,对一款PZT陶瓷进行了实验研究.在分析其激振力的影响因素及影响规律的基础上,提出了压电陶瓷定频激振能力的评价方法.由实验数据建立了评价方程,得到了其定频激振的频率置信区间,使其可以更好地被应用到板壳类薄壁构件的高阶振动测试研究中.研究结果表明,压电陶瓷定频激振能力的总体特点是在低频状态下可实现高幅定频激励,而高频状态下仅能实现低幅定频激励.  相似文献   

5.
文章对随机激励下结构振动声辐射问题进行研究,利用ACTRAN软件对简单结构体的振动声辐射问题进行了系统的分析,运用有限元-无限元方法对不同监测点进行定义加载,分析了声辐射声压与振动幅值的关系,同时,利用实验进行分析验证.结果证明:随着激励频率的增大,结构体振动幅值与声辐射声压值变化呈正相关关系,即激振频率越大,振动幅值与声压值的变化也变大.同时,有裂纹的结构体裂纹处的振动幅值与声压值比正常结构体变化非常明显,从而为运用振动与声学进行机械设备非接触故障诊断的研究提供了新的方法.  相似文献   

6.
金属材料振动拉伸的实验   总被引:1,自引:0,他引:1  
研究了低碳钢在激振频率0~100Hz范围内进行振动拉伸的应力应变行为·采用不同的激振力幅和激振频率进行实验,记录金属材料产生的变形与所受载荷等数据·结果表明激振频率增大,材料的屈服极限σs和强度极限σb会明显减小·改变激振频率,σs和σb也随之改变·在激振频率1Hz时,测得了材料瞬态应力应变曲线,表现出明显的滞回特性·以上研究对探讨振动加工机理及其工程应用具有重要意义·  相似文献   

7.
通过AMESim软件建立了桩-土系统的动力学数值仿真模型,研究了振动沉桩过程中激振力频率和土质条件对桩-土系统的振动摩擦特性的影响.对比不同参数下沉桩位移、桩端阻力和桩侧摩擦力的变化曲线,得出激振力频率以及土质条件对沉桩效果的影响规律:激振频率越高,沉桩振幅越小;土的黏聚力越大,沉桩阻力初始值越大;土容重越大,沉桩阻力变化速率越快.从而获得摩擦力较小的激振频率区间,以提高土木建筑施工中桩-土系统的工作效率.  相似文献   

8.
根据汽轮机叶片外形特点,在3D建模软件Solidworks中建立Z型叶冠单叶、成组叶片及整圈叶片的实体模型,通过ALGOR软件的机械运动仿真(MES)功能,计算带冠叶片组在不同冠间间隙、不同激励频率和幅值下的碰摩减振规律特性,并对所得结果进行分析。结果表明:通过冠间相互碰摩可有效减小叶片振动,当冠间间隙介于0.2 mm到0.5 mm之间时,碰摩减振效果最好;外部激振力对旋转产生的动应力影响较小,在特定的间隙值下,随激振力的变化叶片应力峰值变化较小。这些结论对汽轮机末级叶片的设计有重要的指导意义。  相似文献   

9.
研究了深海顶张式立管参数激励和涡激共同作用下的非线性振动特性.考虑平台升沉运动激励和涡激力建立立管振动方程,采用多尺度方法求解立管振动方程的近似解析解.考虑和型组合参激共振1 2?????情况研究立管的振动特性,计算得到了立管的幅频响应曲线,分析了平台升沉运动对深海立管非线性振动的影响.结果表明:当参激频率满足和型组合参激共振条件时,立管振动响应中频率为1/2参激频率的亚谐波成分明显;且由于内共振关系的存在,立管1阶模态被激发,其幅值远大于2阶模态幅值;随着平台升沉运动幅值的增大,立管横向振动幅值显著增大,这表明平台运动对于立管弯曲振动有重要影响.  相似文献   

10.
考虑到橡胶元件的动刚度与激振振幅和激振频率有关,研究了不同激振形式下不同激励频率和激振幅值对橡胶阻尼式动力吸振器固有频率测试结果的影响.通常情况下,动力吸振器的固有频率的测试只考虑频率相关性,忽略了幅值相关性.文中分别采用恒振幅激振、恒加速度激振、随机加速度激振、脉冲激振和力锤敲击激振,对一橡胶阻尼式动力吸振器的固有频率进行了测试分析,给出了不同激振形式下动力吸振器的固有频率的测试值.结果表明:激振幅值对动力吸振器的固有频率的测试结果影响很大,目前一些企业采用的用力锤激振方法测试得到的橡胶阻尼式吸振器的固有频率并不能很好地表征动力吸振器的固有频率.文中结果为在真实振动工况下动力吸振器的固有频率的选择提供了依据.  相似文献   

11.
在不同的激振频率、不同激励电流下,对一种带旁通孔的磁流变减振器在MTS平台上进行阻尼力测试.该减振器的活塞具有不受磁场影响的3个旁通孔.实验结果表明,该减振器的阻尼力可以在较宽的激振速度范围内与激振速度近似成线性关系,随着激励电流和激振频率的增大,该减振器的阻尼力逐渐增大.在各种激振频率下,阻尼力均没有出现突增现象;但是当阻尼力达到一定数值后,阻尼力基本不再受活塞速度影响.这些特性可以有效提高车辆乘坐舒适性.通过引入液体的局部水头损失,对磁流变液分别采用宾汉模型和艾林模型,计算出减振器的阻尼力理论值.经比较,采用艾林模型得到的理论值与实验值吻合得更好.在各工况下,行程中间位置的阻尼力理论值与实验值最大误差小于2. 3%.若忽略液体的局部水头损失,阻尼力的理论值与实验值的误差将增大.该结果表明,引入局部水头损失及采用艾林模型进行阻尼力理论计算是合理的,研究结论可以对减振器的设计和优化提供参考.  相似文献   

12.
深海立管在海流作用下发生涡激振动,在平台垂荡作用下发生参数激励振动,参数激励-涡激联合振动使立管动力特性更为复杂.在船舶拖曳水池通过拖车带动立管运动模拟均匀流下立管涡激振动,并设计频率和行程均可调的连杆装置带动连接立管顶端的弹簧,以模拟立管顶端受平台垂荡运动的影响,从而进行立管参数激励-涡激联合振动试验,研究流速、顶张力及参数激励对深海立管涡激振动的影响.结果表明,流速越大,立管振动应力越大,振动主频率越高;顶张力越大,振动应力越小,顶张力变化对立管涡激振动主频率影响不大;参数激励加剧了立管的涡激振动,立管振动应力随平台垂荡幅值增大而增大,随垂荡频率升高而增大,立管振动频率出现了参数激励频率的成分.  相似文献   

13.
肖玥 《科学技术与工程》2013,13(13):3598-3602
针对涡轮部分进汽时非定常流动特性及其产生的激振力问题,使用商业软件NUMECA对不同转速涡轮内的流动进行了数值模拟。计算非定常流动下动叶轴向力和切向力,同时分析动叶表面的压力变化,得到激振力序列,对激振力进行频谱分析。研究发现:在堵塞部分与进汽部分的交界处存在较大切向压力梯度,造成轴向力和切向力的急剧变化;部分进汽下,叶轮激振力在基频下谐波分量最大,各倍频谐波分量依次减小,且各转速激振力频率主要集中在10倍频以下,超过10倍频的谐波分量较小。相同进口总压下,轴向力谐波分量随转速增大而增大,切向力则相反,且切向力各倍频谐波分量大小差距随转速增大而减小。  相似文献   

14.
为研究拉索摩擦阻尼器的减振效果,开展了附加摩擦阻尼器拉索的自由振动和强 迫振动特性试验. 首先进行铜-钢金属摩擦阻尼器模型的力学性能试验,得到螺栓扭矩与摩擦 力之间的关系. 然后进行摩擦阻尼器-拉索系统模型自由振动特性试验研究,由试验测得的自 由振动位移衰减曲线得到对数衰减率,分析得到对数衰减率随振幅的变化规律,并与现有理 论进行对比. 通过快速傅里叶变换和小波变换对自由振动加速度时程进行频谱分析和时频分 析得到模态频率变化情况 . 最后进行拉索-摩擦阻尼器系统的不同激振力-控制强迫振动试 验,通过扫频方式得到拉索振幅与激振频率的关系,研究摩擦阻尼器对拉索共振幅值的影响. 试验结果表明摩擦阻尼器可以有效地减小小幅与大幅激振力时强迫振动的共振幅值;两者相 比,摩擦阻尼器在大幅激振力作用下减振效果更显著.  相似文献   

15.
对称作用于拱结构的周期性荷载,一般来说,只引起拱面内的对称振动,然而在一定的条件下可能引起很大振幅的面内反对称振动以及面外对称振动,这是拱结构由于参数共振引起的动力失稳问题。本文针对圆弧浅拱平面外动力稳定问题,基于激振实验,利用APS系列激振器模拟拱顶单点简谐激励,采用BK测振系统测定圆弧拱横向振动响应,测得结构自振模态与阻尼比,通过往返不断扫频方式获得动力不稳定域边界,并与理论结果进行了对比分析,探究了其在周期集中荷载作用下的动力侧倾失稳机理,研究结果表明:当外部激励荷载频率约为结构2倍自振频率时,结构出现激烈的横向参数共振,并且只有外激励幅值大于临界激发力时才会发生参数共振,而阻尼条件的存在影响着临界激发力的大小,外激励幅值越大,参数共振现象越容易发生,该文验证了圆弧浅拱面外动力不稳定域计算结果的准确性,研究成果为拱结构的动力稳定设计提供了一定的参考价值。  相似文献   

16.
针对参激-涡激耦合激励下的悬浮隧道锚索动力响应问题,考虑了流体与结构非线性相互作用,假设涡激升力系数为结构振动位移的多项式,建立与结构运动耦合的涡激升力公式.通过欧拉梁理论和伽辽金法建立和求解锚索在环境激励振动下的运动微分方程,以一个拟建的悬浮隧道锚泊系统设计初步方案为数值算例,结合MATLAB程序并采用龙格-库塔法对锚索动力方程的进行了数值求解,分析了参数激励幅值、频率和流速等关键敏感性因素对锚索参激-涡激耦合振动响应的影响作用,以期为实际工程的设计提供有益的参考.分析结果表明:在涡激-参激联合激励作用下,会激起系统较大响应,系统安全性和稳定性变差;随着参数激励幅值的增加,锚索位移均方根逐渐增大,涡激升力与结构的耦合作用逐渐减小;涡激升力高阶项起到了非线性阻尼的作用,从而模拟涡激振动的振幅自限制性.  相似文献   

17.
利用ANSYS Workbench数值模拟软件分析了油井环空内套管柱共振响应特性,研究了振动波在套管柱-钻井液-水泥浆耦合系统中的传播规律。结果表明,套管柱共振频率随自身长度的增加而逐渐减小;套管柱底端振幅随频率、套管壁厚的增加而减小,随激振力的增大而增大;振动波衰减曲线分为快速衰减和缓速衰减两部分,振动波衰减速率随激振频率、套管壁厚的增加而逐渐减小,随激振力增加而加快;"强激振力+薄壁套管+低频"组合下共振效果明显,适合改善局部井段固井质量,而"弱激振力+厚壁套管+高频"组合振动波作用距离较远,适合提升长井段固井质量。  相似文献   

18.
基于开发的内置浮框式三节段测力模型装置,通过弹性悬挂测振风洞试验测试了某大跨度斜拉桥初步设计主梁断面的涡振响应及对应的涡激力.分析了发生竖向涡激共振的0°与+3°两种风攻角下的数据,验证了内置浮框式三节段测力模型在桥梁断面气动力测试中的可靠性,对比研究了不同风攻角下涡激力与涡激振动响应的测试结果,探讨了锁定区间范围内涡振频率、力与位移之间相位差及涡激力做功的变化情况.结果表明,内置浮框式三节段测力模型可以在风致振动过程中同步测试气动力;所测试得到的涡激力频率在风速锁定区间内与位移响应频率完全一致,同时,模型的竖弯涡激力与涡激振动位移响应之间存在的相位差随风速增大而增大,而涡激力做功有一个先增大后减小的变化过程.  相似文献   

19.
结构钢的磁导率和电磁损耗等磁参数的测量对于研究其应力状态、成分以及缺陷等具有重要意义。该文提出了一种利用动态磁化法快速测量结构钢磁导率和电磁损耗的方法,介绍了实现该方法的测量装置,并利用该方法测量了Q235钢的磁导率和电磁损耗,探讨激励电流幅值和频率对测量结果的影响规律。实验结果表明:该方法可用于测量结构钢处于弱正弦磁场下的磁导率和电磁损耗。随着激励电流幅值增大,磁导率和电磁损耗增大;随着激励频率增大,磁导率减小,电磁损耗增大。作为应用实例,该文还研究了磁导率和电磁损耗与构件应力的关系。结果表明:随着结构压应力减小,拉应力增大,磁导率和电磁损耗增大。该方法可用于对应力状态进行评价。  相似文献   

20.
为了找出振动桩锤在沉桩作业过程中产生“跳机”现象的根本原因,从而采取有效措施解决“跳机”这一工程实际问题,从非线性振动力学的角度出发,建立二自由度分段非线性振动桩-土动力学模型,基于数值积分方法,采用四阶龙格-库塔法运算程序进行数值仿真,研究激振频率、地基土的刚度、激振器上下层偏心块的相位差对振动沉桩动力学特性的影响.结果表明:引起桩端与土有脱离的因素主要是激振力和地基土的刚度,激振力和地基土的刚度越大,则桩端与土脱离的程度越严重;当桩端与土没有脱离时,桩和机架的振动频率与激振频率相等,而在桩端与土有脱离时,机架的振动频率将小于激振频率,桩的振动频率也略有降低,当机架频率降低至一定范围时就会出现“跳机”现象.消除“跳机”现象的措施主要是减小激振力,可以通过适当降低激振频率、减小偏心力矩、增大激振器上下层偏心块相位差的方法实现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号