首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 531 毫秒
1.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,在变形温度650~850℃、应变速率0.001~10 s-1和总压缩应变量50%的条件下,对Cu-Cr-Zr合金的流变应力行为进行研究.通过应力-应变曲线和显微组织图分析了合金在不同应变速率、不同应变温度下的变化规律.结果表明:应变速率和变形温度对合金再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也同样容易发生动态再结晶,并且对应的峰值应力也越小.从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程.研究分析Cu-Cr-Zr合金的热加工性能,可为生产实践提供理论指导与借鉴.  相似文献   

2.
AZ61镁合金热压缩流变应力的实验   总被引:1,自引:1,他引:0  
采用Gleeble-1500型热模拟机,对AZ61镁合金进行高温压缩实验,分析该合金在不同变形温度与应变速率条件下的压缩流变应力.研究AZ61镁合金在热变形时,流变应力与变形温度、应变速率之间的关系,并建立相应的流变应力模型.结果表明,AZ61镁合金在高温压缩变形时,当变形温度一定时,流变应力随应变速率的增大而增大;而当应变速率一定时,流变应力随变形温度的升高而降低.AZ61镁合金的热变形过程均表现出较明显的动态再结晶特征,其流变应力的变化规律主要受加工硬化和再结晶软化两者机制的共同作用.在热变形下,AZ61镁合金峰值流变应力可以用双曲正弦模型来进行较好的描述.  相似文献   

3.
采用Gleeble-1500热模拟机对7075铝合金触变高温压缩变形过程中的变形特性进行研究,分析该合金的应变速率与流变应力之间的关系,采用线性回归法建立了流变模型.结果表明:保温时间1 min、变形温度350~450℃、应变速率0.01~1.00s^-1的条件下,应力曲线变化可分为加工硬化段、平稳变化段和稳定变化段三个阶段.随着应变速率的增加,稳态流变应力增大;应变速率和流变应力之间基本满足指数关系,该合金高温塑性变形过程是一种高温蠕变的热激活过程.  相似文献   

4.
Al-Mg-Sc合金热压缩变形的流变应力行为   总被引:4,自引:1,他引:3  
采用热模拟试验对1种Al-Mg-Sc合金进行等温热压缩实验,研究该合金在变形温度为300~450℃,应变速率0.001~1 s-1条件下的热压缩变形流变应力行为.结果表明:该Al-Mg-Sc合金在变形温度为300℃,应变速率0.01~1 s-1的条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征;而在其他条件下,应力达到峰值后随应变的增加而逐渐下降,表现出动态再结晶特征.应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,通过线性回归分析计算出该材料的应变硬化指数n以及变形激活能Q,获得该铝合金高温条件下的流变应力本构方程.  相似文献   

5.
文中采用热力模拟试验方法对新型铸态高强铝合金试样进行了热压缩实验,研究了新型高强铝合金在变形温度为300~420℃、应变速率为0.01~1 s-1条件下压缩变形程度达到50%的流变应力变化规律。研究表明,该合金热变形应力—应变曲线呈现动态回复型曲线;流变应力随变形温度的升高而降低,随应变速率的增大而增大;热变形激活能为269.985 k J/mol,应力指数为7.009 7。  相似文献   

6.
利用Gleeble-1500热模拟试验机对6005A和6082铝合金进行高温等温压缩试验,研究了在变形温度为450-550℃和应变速率为0.005-10s^-1条件下两种铝合金的热变形流变行为.6005A铝合金在低应变速率条件下,不同变形温度时的流变曲线均呈现波浪形特征,随着应变速率的增加,硬化和软化接近平衡,表现为稳态流变特征;在高应变速率条件下,硬化过程占据主导地位,回复和硬化过程的竞争使流变曲线呈现波浪形上升的趋势.6082铝合金在低应变速率情况下,不同变形温度时的流变曲线未出现周期性波动;在中等应变速率条件下也表现为稳态流变特征;在高应变速率条件下出现波浪形特征.两种铝合金均为正应变速率敏感材料,其热变形是受热激活控制.最后给出了铝合金热变形条件下流变应力、应变速率和变形温度三者之间的关系式.  相似文献   

7.
利用GIeeble-1500热模拟机在变形温度为300-450℃、应变速率为0.001-1.0s-1的条件下,对均匀化后经快速水冷和慢速随炉冷却这2种不同冷却方式的7050铝合金样品进行高温等温压缩实验,研究该合金的热压缩变形流变行为.结果表明:合金流变应力不仅随变形温度的降低和应变速率的升高而增加,而且随均匀化后淬火冷却速度的增加而显著升高;均匀化后水淬样品中合金元素过饱和固溶于基体内,变形过程中第二相析出并明显粗化;快速水冷样品的热形变表观激活能为224.9 kJ/mol,而慢速随炉冷却样品的热形变表观激活能为144.6 kJ/mol;热压缩变形流变应力的差别随形变温度的升高而降低;在高温低应变速率下,应力-应变曲线出现锯齿形波动,呈不连续动态再结晶特征;7050铝合金高温塑性变形时的流变行为可用包含Arrhenius项参数Z的双曲正弦函数描述.  相似文献   

8.
在变形温度为900~1060℃和应变速率为0.001~10s-1条件下,对Ti62421s合金进行变形量为60%的热压缩变形,以研究Ti62421s合金的热压缩流变应力行为.研究温度与应变速率对Ti62421s热变形流变应力的影响,建立Ti62421s合金热变形流变应力的本构方程和加工图.研究结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳:当在高应变速率(10s-1)下变形时,出现不连续屈服现象:应力峰值随应变速率的增大而增大,随温度的升高而呈减小趋势:合金最佳变形工艺参数为:温度θ=980℃,应变速率(ε)=0.01~0.1s-1.  相似文献   

9.
采用Gleeble-1500D热模拟机进行高温等温压缩试验,研究了半连续铸造Al-15Si铝合金在变形温度为300~500℃,应变速率为0.001~5 s-1条件下的流变应力行为.结果表明,在试验温度范围内,此合金的流变应力随变形温度的升高,应变速率的降低而降低,说明该合金属于正应变速率敏感性材料;可采用Zener-Hollomon参数双曲正弦形式来描述Al-15Si合金高温塑性变形时的流变应力行为;σ解析表达式中材料常数A,α,n值分别为2.07×1012s-1,0.026 MPa-1,4.61,Al-15Si合金的平均热变形激活能Q为180.96 kJ/mol.  相似文献   

10.
采用Gleeble-3800热模拟机对5083铝合金进行高温等温压缩实验,研究该合金在变形温度为300~500℃、应变速率为0.0l~10.0 s-1条件下的流变行为,建立合金高温变形的本构方程和加工图,采用电子背散射衍射(EBSD)分析变形过程中合金的组织特征。研究结果表明:流变应力随变形温度升高而降低,随应变速率增大而升高;当变形温度为400~500℃时,合金发生动态再结晶;5083铝合金的高温流变行为可用Zener-Hollomon参数描述,该合金在真应变为0.6时的加工图中存在2个失稳区域,其优选的加工条件是变形温度为420~500℃,应变速率为0.01~0.10 s-1。  相似文献   

11.
通过热压缩变形实验, 利用光学显微镜观察, 对ZK31 0.3Yb镁合金变形过程的流变应力和组织演变进行研究. 研究结果表明: 663 K/0.1 s-1是最佳的变形条件, 在此条件下, 合金的流变应力低, 动态再结晶充分激发, 合金的塑性好;当变形温度降至623 K和573 K时, 动态再结晶不能充分激发, 合金变形的流变应力明显提高, 尤其是573 K变形时流变应力达到185 Mpa;而变形温度提高到723 K时, 晶界处形成楔形裂纹, 合金的塑性差;在663 K时变形, 尽管应变速率降低至0.001 s-1, 合金的动态再结晶充分激发, 流变应力下降, 但变形的进程被减缓;当变速率提高到1.000 s-1时, 晶粒间的协调变形不能发挥作用, 合金的塑性最差.  相似文献   

12.
通过Gleeble 3500型热模拟机研究了Mg97Y2Zn1镁合金在热变形过程中流变应力与变形温度和应变速率等之间的关系,并建立了相应的流变应力模型.结果表明:在所采用的试验条件下,Mg97Y2Zn1合金的流变应力随变形温度的升高而降低,随应变速率的增加而提高;Mg97Y2Zn1合金的流动应力应变行为可用Zener Hollomon参数表示;Mg97Y2Zn1合金在高温塑性变形过程中的平均变形激活能为137.277 kJ/mol.  相似文献   

13.
在Gleeble-1500热模拟试验机和UTM5305实验机上以不同的变形条件对AZ31镁合金进行高温热变形试验,研究该材料在高温热变形过程中的真应力应变。研究结果证明:在变形过程中的AZ31镁合金的真应力随应变速率增大、变形温度降低而升高。在压缩变形过程中的真应力峰值、真应变和动态再结晶与拉伸变形过程相比有明显差异;该镁合金热变形过程中的真应力为用包含Arrhenius项的Zener-Hollomon参数来描述,其压缩拉伸变形激活能分别为132.38 kJ/mol和Q=255.26 kJ/mol.  相似文献   

14.
为了解决Cr20 Ni80电热合金锻造开裂的问题,在Gleeb-1500D热模拟试验机上对该合金进行热压缩试验,研究变形温度为900~1220℃,应变速率为0.001~10 s-1条件下的热变形行为,并根据动态材料模型建立合金的热加工图.合金的真应力-真应变曲线呈现稳态流变特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中稳态流变应力可用双曲正弦本构方程来描述,其激活能为371.29 kJ·mol-1.根据热加工图确定了热变形流变失稳区及热变形过程的最佳工艺参数,其加工温度为1050~1200℃,应变速率为0.03~0.08 s-1.优化的热加工工艺在生产中得到验证.  相似文献   

15.
通过高温单道次压缩实验,研究800H合金在变形温度850~1 050℃和应变速率0.01~10 s-1条件下的热变形行为和微观组织变化.根据单道次压缩实验数据,绘制了不同变形条件下的800H合金真应力-真应变曲线,通过非线性回归建立了流变应力数学模型;通过线性回归建立了不同温度区间内热变形本构方程.分析了热变形条件对合金微观组织的影响,结果表明:动态再结晶更有可能发生在低应变速率和高变形温度的变形条件下;当变形温度低于950℃时,沿晶界析出的Cr23C6粒子对动态再结晶的发生有一定的抑制作用.  相似文献   

16.
6063铝合金高温流变本构方程   总被引:22,自引:0,他引:22  
采用圆柱试样在G1eeb1e—1500热模拟机上进行高温等温压缩实验,研究了6063铝合金在高温塑性变形过程中流变应力的变化规律.结果表明:应变速率和变形温度的变化强烈地影响6063铝合金流变应力,流变应力随变形温度升高而降低,随应变速率提高而增大,在高应变速率下出现明显的动态软化.  相似文献   

17.
采用Gleeble-1500热模拟机对用近液相线铸造方法制得的半固态ZL201合金进行了不同温度和不同应变速率下的压缩变形,并对实验结果进行了回归处理,建立了半固态ZL201合金在不同变形温度、不同应变速率下的数学模型.研究结果表明:当应变速率相同时,压缩应力随变形温度的增加而减小;当应变温度相同时,压缩应力随着应变速率的增加有先增大后减小的趋势.本实验可为半固态合金触变成形的数值模拟和优化半固态金属加工工艺参数提供基础数据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号