首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation and evolution of Precambrian continental crust in South China   总被引:25,自引:0,他引:25  
The occurrence of zircons with U-Pb ages of ~3.8 Ga and Hf model ages of ~4.0 Ga in South China suggests the existence of the Hadean crustal remnants in South China. Furthermore, a detrital zircon with a U-Pb age as old as 4.1 Ga has been found in Tibet. This is the oldest zircon so far reported in China. These results imply that continental crust was more widespread than previously thought in the late Hadean, but its majority was efficiently reworked into Archean continental crust. On the basis of available zircon U-Pb age and Hf isotope data, it appears that the growth of continental crust in South China started since the early Archean, but a stable cratonic block through reworking did not occur until the Paleoproterozoic. Thus the operation of some form of plate tectonics may occur in China conti- nents since Eoarchean. The initial destruction of the South China craton was caused by intensive magmatic activity in association with the assembly and breakup of the supercontinent Rodinia during the Neoproterozoic. However, most of the Archean and Paleoproterozoic crustal materials in South China do not occur as surface rocks, but exist as sporadic crustal remnants. Nevertheless, the occur- rence of Neoproterozoic magmatism is still a signature to distinguish South China from North China.  相似文献   

2.
U-Pb dating was made by the LA-ICP-MS method for detrital zircons from the Wudangshan volcanic-sedimentary succession in the South Qinling. Samples comprise quartz sandstones of the Wudangshan Group collected from the base of the Yangping Formation and an upper layer of the Shuangtai Formation overlain its volcanic sequence, and two river-sand collections from the drainage systems cutting across the two formations, respectively. The results show that the Yangping detrital zircons are dominated by 830–780 Ma grains with a minor population of ~1.0–0.84 Ga and sporadic grains of ~2.6, ~2.4 and 2.0 Ga, whereas the Shuangtai zircons yield an upper intercept age of 763±33 Ma, identical to the timing of the Wudangshan volcanism within error, with few concordant grains of 1.9 and 0.86 Ga. Age spectra for the two river-sand samples are similar to those of the Yangping and Shuangtai Formations, respectively. It thus suggests that the Wudangshan strata are less than 780 Ma, whereas their major detrital zircon populations of 1.0–0.85 Ga and 830–780 Ma are consistent with timing of the Hannan magmatic activities along the northwestern margin of the South China Block. This suggests a Hannan or adjacent area provenance for the Wudangshan strata. The Wudang area is characterized by rift-related igneous events at ~755 and ~680 Ma, respectively, pointing to a tectono- magmatic history different from the Hannan area. It is inferred that the ~755 Ma magmatism is likely to indicate a separation of the South China Block from the supercontinent Rodinia, while the ~680 Ma event suggests a further split between the South Qinling and some unknown continent.  相似文献   

3.
High-precision U-Pb dating by in situ LA-ICP-MS yields an age of 4079±5 Ma for a xenocrystal zircon from Ordovician volcanics of the Caotangou Group in western part of the North Qinling Orogenic Belt. As a result, the North Qinling Orogenic Belt becomes one of a few localities in the world that contain Hadean age records (4276±6 Ma and 4404±8 Ma detrital zircons from Jack Hill of the Yilgarn craton, 4016 Ma Acasta gneisses of the Wopmay Orogeny and Burang quartzite with detrital zircon of 4103 Ma in Tibet). It is also the first report of the Hadean age in Phanerozoic volcanics. The finding of the 4.1 Ga xenocrystal zircon provides not only the geochronological record of the oldest crustal materials in China, but also the condition for further search for rocks forming in the region during the early time of the Earth's evolution. Thirty-six zircon U-Pb dates from the Ordovician volcanic rocks are subgrouped into seven generations that represent different tectono-magmatic events in the North Qinling Orogenic Belt. Among them, two periods of 0.9--1.5 Ga and 0.4--0.5 Ga are consistent with Mesoproterozoic and Early Paleozoic orogenies, respectively.  相似文献   

4.
Alkalinerocksareoftenassociatedwithextensionaltectonicsandregardedasthecharacteristicproductsoc-curringincontinentalmarginsorriftzones[1].Theywereusuallygeneratedindeep-large-faultzoneandcloselyconnectedwithbasic/ultrabasicrocksinspace.Therefore,alkalinerocksareofsignificanceintectonicpetrology.Atthebeginningofthe1980s,geologicalandgeophysicalstudieswereperformedinPanzhihua-Xichangpaleo-riftzone(Panxiriftzone).However,thesestudiesonlyin-volvedgeologyandpetrochemistryoftheMaomaogouringalkalic…  相似文献   

5.
Detrital zircon grains of Late Cenozoic sediments dated back to ca.3.6 Ma from core DY03 in the Yangtze delta were dated by LA-ICP-MS,in order to investigate the sedimentary provenance and to find some clue for the evolution of the Yangtze River.Most of the detrital zircon U-Pb ages are distributed at 100 300 Ma,350 550 Ma,600 1000 Ma,1400 2000 Ma and 2200 2800 Ma,which correspond well with the main tectonic and magmatic events in the Yangtze drainage.The detrital zircon age patterns show distinct differenc...  相似文献   

6.
Metamorphic basement rocks in the Cathaysia Block are composed mainly of meta-sediments with different ages. New zircon U-Pb geochronological results from the meta-sedimentary rocks exposed in the Zengcheng and Hezi areas, southern Cathaysia Block, show that they consist dominantly of early Neoproterozoic (1.0-0.9 Ga) materials with minor Paleo- to Mesoproterozoic and late Neoproterozoic (0.8-0.6 Ga) components, suggesting that the detritus mostly come from a Grenvillian orogen. The youngest detrital zircon ages place a constraint on the deposition time of these sediments in Late Neoproterozoic. Zircon Hf isotopic compositions indicate that the Grenvillian zircons were derived from the reworking of Mesoproterozoic arc magmatic rocks and Paleoproterozoic continental crust, implying an arc-continent collisional setting. Single-peak age spectra and the presence of abundant euhedral Grenvillian zircons suggest that the sedimentary provenance is not far away from the sample location. Thus, the Grenvillian orogen probably preexisted along the southern margin of the Cathaysia Block, or very close to the south. Similarity in the ages of Grenvillian orogeny and the influence of the assembly of Gondwana in South China with India and East Antarctic are discussed, with suggestion that South China was more likely linked with the India-East Antarctica continents in Early Neoproterozoic rather than between western Laurentia and eastern Australia.  相似文献   

7.
The Xilin Gol Complex was referred to the meta-morphic rocks exposed near Daqing Pasturage, east of Xilinhot, for the first time by the Hebei Geological Survey in 1958[1]. Similar metamorphic rocks have been increas-ingly identified in the Xilin Gol-Xiwuqi-Balinyouqi re-gion since then. They all are collectively grouped into the Xilin Gol Complex and considered as a part of the Bao- yintu Group (Pt1by)[1]. However, the timing of its deposi-tion and subsequent deformation and metamorphi…  相似文献   

8.
The Quanji Block, situated between the northern margin of the Qaidam Block and the South Qilian orogenic belt in the NE Qinghai-Tibet Plateau, China, is thought to represent a remnant continental crust. In this study, LA-ICPMS U-Pb analyses of detrital zircon grains from two mesosomes in the migmatitic Dakendaban Group yield ages of 2467+28/-26 Ma and 2474+66/-52 Ma, respectively. Zircon grains from a leucosome give two distinct ages of 2471+18/-16 Ma and 1924+14/-15 Ma. Zircon from a granitic pegmatite that intruded into the Dakendaban Group yields an age of 2427+44/-38 Ma. These data suggest that the Early Paleoproterozoic Dakendaban Group deposited between -2.43 to -2.47 Ga and has been subject to an intrusive event at 2.43Ga, and regional metamorphism-anatexis at 1.92 Ga. The common lower intercept age of -0.9 Ga probably records a significant Early Neoproterozoic event in the Quanji Block.  相似文献   

9.
Wan  YuSheng  Miao  PeiSheng  Liu  DunYi  Yang  ChongHui  Wang  Wei  Wang  HuiChu  Wang  ZheJiu  Dong  ChunYan  Du  LiLin  Zhou  HongYing 《科学通报(英文版)》2010,55(13):1278-1284
This paper reports detrital zircon age distributions of meta-sedimentary rocks of the Gaofan, Hutuo and Dongjiao groups in the Wutai and Dongjiao areas of the North China Craton. Detrital zircons of a quartzite from the Gaofan Group are mainly ~2.5 Ga in age, with some ~2.7 Ga and older. A quartzite pebble from the basal conglomerate of the Hutuo Group is similar in detrital zircon age distribution to the quartzite of the Gaofan Group. For a meta-feldspar-quartz sandstone from the Dongjiao Group, the age of...  相似文献   

10.
选择吕梁群中原岔上群北部地层的蚀变火山岩进行锆石U-Pb年代学和Hf同位素研究。锆石U-Pb测试获得两组年龄结果, 较年轻的谐和年龄为1813±6 Ma (n=7), 较老的207Pb/206Pb加权平均年龄为2516±31 Ma(n=2), 前者为火山岩喷发时代, 后者代表捕获锆石年龄。年轻锆石的εHf(t)值为-10.8~-2.3, TDM1值为2308~2655 Ma; 捕获锆石的εHf(t)值为+10.0~+13.1。年龄约为2.5 Ga锆石的εHf(t)值高于亏损地幔演化线, 考虑到UPb同位素和Hf同位素测点位置不完全相同, 说明所获得的Hf同位素组成为无地质意义的混合数值; 年龄约为1.8 Ga锆石的Hf同位素特征反映其可能源于富集地幔或受地壳物质混染的亏损地幔。结合前人的研究成果, 推断岩浆作用事件发生在约1.81 Ga 的碰撞后阶段。  相似文献   

11.
Evolution of mantle and crust in all blocks of China and their relationship with the surrounding blocks are re-lated to amalgamation and breakup of the supercontinents. Studies on the Mesoproterozoic Grenvillian orogeny and the configuration of Neoproterozoic Rodinia provide the most important advances to the ideas of continental crustal growth and configuration of plates[1,2]. Recent studies show that there are geological records of assembly and breakup of Rodinia in the Cathaysia and Yang…  相似文献   

12.
In situ U-Pb dating and Lu-Hf isotopic analysis were carried out for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southern margin of the North China Craton (NCC). The results provide further constraints on the crustal formation and evolution history of NCC. Four ^207Pb/^206Pb age populations were obtained from 99 analyses, with clusters at -3.40 Ga, 2.77-2.80 Ga, -2.50 Ga and 2.34 Ga, respectively. The 3.40 Ga old zircons have similar Hf isotopic compositions to those from Archean rocks in the Jidong and Anshan areas of NCC. However, crustal remnants older than 3.6 Ga have been identified in the southern margin of NCC, the South China Craton, the northwestern part of the Qinling Orogen and its adjacent area. Thus, it is not easy to trace the source rock from which the 3.40 Ge detrital zircons were derived. It can be inferred that the crustal remnants older than 3.40 Ga might have been widely distributed in the North China Craton. The 2.77-2.80 Ga zircons make up a relatively small proportion and have the highest εHf(t) values (up to 6.1±1.6), consistent with the Hf isotopic composition of the depleted mantle at 2.83 Ga. Their single-stage Hf model age of 2.83 Ga is close to their crystallized age, suggesting that their source rocks were extracted from the contemporaneous depleted mantle. The -2.50 Ga zircon grains constitute about 85% of the total grain population and their Hf isotopic compositions indicate major growth of juvenile crust at -2.50 Ga but minor reworking of ancient crust. The youngest zircon dated in this study gave an U-Pb age of 2337±2.3 Ma, which can be considered the maximum depositional age of the formation of the Songshan Group.  相似文献   

13.
Origin and tectonic evolution of the Qilian Precambrian basement on NW China were investigated using zircon U-Pb ages with collaborating stratigraphic and paleontological evidence. Zircon grains were separated from two schists, two granitic gneisses and one mylonized gneiss and dated with SHRIMP. Seventy percent of sixty-one detrital zircon ages from two schists ranges from 0.88 Ga to 3.09 Ga, mostly within 1.0 Ga to 1.8 Ga with a peak at 1.6 Ga to 1.8 Ga, and twenty percent varies from 2.0 Ga to 2.5 Ga. A few falls in the Archean and Neoproterozoic periods. The two granitic gneisses were dated 930±8 Ma and 918±14 Ma, whereas the mylonized granitic gneiss was dated 790±12 Ma. These ages represent two periods of magmatisms, which can be correlated with the early and late stages of magmatisms associated with the Jinningian movement on the Yangtze Blocks. The results from this and previous studies indicate that the ages of the Precambrian detrital zircons from the Qilian Block are widely distributed in the Proterozoic era, distinct from the North China Block which was stable in the Neo-Mesoproterozoic era. By contrast, the age histograms of the detrital zircons from the Qilian Block is similar to those from Precambrian basement of the Yangtze Craton. Therefore, it is suggested that the Qilian Block had a strong affinity toward the Yangtze Craton and might belong to the supercontinent Gondwana in the Neoproterozoic time. This inference is supported by Nd model age (TDM), stratigraphic, and paleontological evidence. It is further considered that the Qilian Block was rifted from the supercontinent Gondwana during late Sinian to form an isolated continent in the Proto-Tethyan Ocean, moving towards the Alaxa Block in the North China Craton. The part of Proto-Tethyan Ocean between the Qilian and Alaxa Blocks should correspond to the so-called Paleo-Qilian Ocean. Following the closure of the Paleo-Qilian Ocean in the early Paleozoic, the Qilian Block collided with the Alaxa Block to form the North Qilian Orogenic Belt. Based on this tectonic explanation, the North Qilian ophiolites should represent parts of lithosphere from the Proto-Tethyan Ocean. Lithological and geochronological evidence also indicates that the Qilian Block underwent continental reactivation possibly induced by the deep northward subduction of the North Qaidam Block in early Paleozoic time.  相似文献   

14.
The LA-ICP-MS U-Pb dating of hundreds of detrital zircon grains from the Sinian sandstones of Liantuo formation and tillites of Nantuo formation at Sanxia area in Yichang identified 3319?3508 Ma zircon grains. Their 207Pb/206Pb and 206Pb/238U ages show excellent agreement (concordia degree 99%?100%). Their CL images exhibit well-developed oscillatory zoning and the Th/U ratios are within 0.46?0.76, implying that they are igneous zircons which formed during middle-early Archean. These zircons are the oldest ones discovered in Yangtze craton until now. However, the detrital zircons with ages older than 3.3 Ga in the metamorphic rocks of Kongling group were not found by further investigation, which suggests the presence of crust older than high-grade metamorphic Kongling terrain in Yangtze craton.  相似文献   

15.
Sixty-two geologically meaningful U-Pb dates were obtained by using SHRIMP technique for the detrital zircons in three metasedimentary rocks from stratigraphically uppermost parts of the Longshoushan Group in the present study. Eighty percents of these dates range from 1.7 Ga to 2.2 Ga with a peak at 1.8-2.0 Ga and twenty percents from 2.3 Ga to 2.7 Ga. The youngest detrital zircon is dated at 1724±19 Ma which is interpreted as the maximum depositional age of the metasedimentary rocks. Therefore, the age for the diagenesis and lithification of the original sedimentary rocks of the Longshoushan Group before the metamorphism must be younger than 1724±19 Ma. Comparison of the age histograms of these detrital zircons with the ages of the igneous rocks on the surrounding older massifs suggests that the sediments of the Longshoushan Group were most likely derived from the Alaxa Block and Tarim Craton. This implies that the affinity between Alaxa Block and Tarim Craton was strong and that they might have been a unified craton during middle-early Proterozoic time.  相似文献   

16.
The Huai’an gneiss terrane mainly consists of TTG gneisses and dioritic gneisses. Laser in situ U-Pb dating of magmatic zircon cores indicates that protolith of these gneisses was formed at ~2.5 Ga. The TTG gneisses have positive εNd(t) values of 2.7 to 4.3, and most of the magmatic zircons have positive εHf(t) values of 2.0 to 8.3. These positive εNd(t) and εHf(t) values are both similar to those of the contemporaneous depleted mantle at 2.5 Ga. Moreover, the young Hf model ages of 2.44 to 2.73 Ga for the magmatic zircons are close to the timing of the zircons growth. The whole-rock εNd(t) values are lower in the dioritic gneisses (0.8 to 1.7) than in the TTG gneisses due to the involvement of ancient crust in its source. However, many magmatic zircons from the dioritic gneisses have similar εHf(t) values (2.0 to 7.9) to that of the coeval depleted mantle; their Hf model ages of 2.49 to 2.75 Ga are close to the U-Pb ages of zircons. The highest εHf(t) values are close to the value of the depleted mantle, and the relatively high εHf(t) values corresponds to the relatively young Hf model age. These Nd and Hf isotope features suggest that these two types of gneisses of the Huai’an gneiss terrane originated from the juvenile crust at ca. 2.5 Ga.  相似文献   

17.
Li  HongYan  Xu  YiGang  Huang  XiaoLong  He  Bin  Luo  ZhenYu  Yan  Bin 《科学通报(英文版)》2009,54(4):677-686
LA-MC-ICPMS U-Pb dating has been performed on detrital zircons from the Upper Carboniferous Tai-yuan Formation (N-8) in the Ningwu-Jingle Basin, west of the North China Craton (NCC). The ages of 72 detrital zircon grains are divided into three groups: 303―320 Ma (6 grains), 1631―2194 Ma (37 grains, peaked at 1850 Ma), 2318―2646 Ma (29 grains, peaked at 2500 Ma). Detrital zircons of Group 2 and Group 3 were likely derived from the basement of the NCC. Group 1 zircons exhibit 176Hf/177Hf ratios ranging from 0...  相似文献   

18.
通过对特瑞艾肯组冰碛岩顶部含砾粉砂岩的碎屑锆石年代学分析, 得到最年轻锆石的年龄为629±8 Ma, 代表特瑞爱肯冰碛岩的沉积时代上限。该年龄限定了特瑞爱肯冰期的结束时代, 并可与扬子板块的南沱冰期以及全球范围的Elatina冰期或Marinoan冰期对比。其余较老年龄集中分布在 718~887 Ma, 1822~2092 Ma 和2345~2613 Ma, 暗示库鲁克塔格地区前寒武纪的3 个主要岩浆活动时期。  相似文献   

19.
Ca. 2.5 Ga TTG rocks in the western Alxa Block and their implications   总被引:3,自引:0,他引:3  
The Alxa Block is considered part of the North China Craton, but the unambiguous Archean basement has not been reported. In this study, we present the first evidence of the Neoarchean rocks in the Beidashan area of the western Alxa Block. The petrographic and geochemical data show that these rocks are granodiorite with TTG (tonalite-trondhjemite-granodiorite) characteristics. Zircon U-Pb dating gave an age of 2522±30 Ma for the magmatic core and 2496±11 Ma for the metamorphic recrystallized rim. The near-identical age between the Latest Neoarchean magmatism and the high-grade metamorphism shows that these features were related to the same Latest Neoarchean-Earliest Paleoproterozoic tectonothermal event. The age-corrected Hf (t) value is mainly between 0.4 and 4.9. The two-stage zircon Hf model age ranges from 2.7 to 3.0 Ga, suggesting that the Mesoarchean- Neoarchean (2.7-3.0 Ga) juvenile crust was reworked at the end of the Neoarchean in the western Alxa Block. These data suggest that the western Alxa Block experienced a Mesoarchean-Neoarchean crust growth and Latest Neoarchean-Earliest Paleoproterozoic tectonothermal event similar to the North China Craton.  相似文献   

20.
为确定与金厂金矿成矿有关的岩浆类型、活动时限和构造背景,采用LA-ICP-MS技术对研究区花岗斑岩开展了锆石U-Pb年龄及原位微区微量元素测定。结果表明:锆石环带发育,wTh/wU值>0.4,具有岩浆锆石特征;锆石年龄分布于220Ma和103~123Ma 2个区间,代表了2期岩浆事件;对2种锆石分别命名为捕获岩浆锆石和新生岩浆锆石;锆石的地球化学和年龄信息显示捕获岩浆锆石的原岩为早三叠世花岗岩;锆石微量元素信息暗示花岗斑岩是早三叠世花岗岩高度熔融结晶分异、侵位于浅部氧化环境而形成,这一过程导致新生岩浆锆石负Eu异常程度降低。新生锆石加权平均年龄为(113.5±3.8)Ma,与成矿年龄一致,据此认为早白垩世的岩浆事件是金厂金矿成矿事件的直接原因,成矿背景为太平洋板块俯冲后的岩石圈伸展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号