首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Widely distributed on the southern margin of the North China Craton, the Taihua complex extends roughly in an east-west direction and the relatively complete successions are found in Lushan County, Henan Province. Like many other Archean terranes, the Taihua Complex can be divided into two major lithological units along the Dangze River, namely gneisses series and supracrustal rocks. The former is located on the north side of the river and chiefly composed of TTG gneisses and amphibolites; the latter on the south side of the river is mainly supracrustal rock. Coupled with the previous studies, the results obtained by this study show that the Taihua complex was formed in a large time span from Neoarchean to Palaeoproterozoic. The TTG gneisses and amphibolites are dated at Neoarchean (2794–2752 Ma). The 2.9 Ga and 3.1 Ga zircons in amphibolites could be xenocrysts. In the North China Craton, the 2.8–2.7 Ga old rocks crop out in several areas e.g. western Shandong Province, Jiaodong Peninsula and Lushan area of Henan Province. In addition, 2.8–2.7 Ga detrital zircons or xenocryst zircons have been recognized in Huai’an, Fuping, Wutai areas of North China Craton and also reported in the Early Paleozoic diamondiferous kimberlites in Mengyin and Fuxian. All these age results indicate that the 2.8–2.7 Ga rocks may have been developed much broader region than today’s outcrops. Zircon Hf and whole rock Nd isotopes show that the 2.8–2.7 Ga tectono-thermal event represents an important period of crustal growth with minor ancient crust reworked in the North China Craton. However the formation of supracrustal rocks is limited to 2.2–2.0 Ga in the Palaeoproterozoic time, not the Archaean, as previously believed. Combined with the chronological data of aluminium-rich metamorphic rocks (Khondalite series) on the southern margin of the North China Craton and adjacent areas, it is suggested that the above areas have widely developed Paleoproterozoic passive continental margin environment.  相似文献   

2.
Recent research on the tectonothermal evolution and geochronology in the Fuping, Hengshan and Wutaishan metamorphic complexes, together with the discoveries of a high-pressure granulite belt in the northern margin of the North China Craton (NCC) and high-pressure metapelites in the Jingangku Group of the Wutaishan complex, suggests that there was a Neoarchean to Paleoproterozoic orogenic belt related to collision between the Eastern and Western continental blocks. Comparison of geological, geochronological, tectonothermal and geochemical data between the Fuping and Hengshan complexes suggests these two complexes most likely originated and evolved as a single lithotectonic domain (i.e., the Taihangshan-Hengshan block) during the early evolution of the North China Craton, probably as an active margin to the Eastern Continental Block. The Taihangshan-Hengshan block has been subjected to intensive and extensive tectono-magmatism and high-grade metamorphism related to collision between the Eastern and Western continental blocks at ~1.80 Ga.  相似文献   

3.
The architecture and growth history of Precambrian crustal basements in the Central Tianshan Block play a key role in understanding the tectonic evolution of the Chinese Tianshan Orogenic Belt.In this study,we present precise LA-ICP-MS zircon U–Pb dating and LAMC-ICPMS zircon Hf isotopic data for two granitic gneisses from Alatage area in the Central Tianshan Block.The magmatic zircons from both samples yield similar protolith ages of 945±6 and 942±6 Ma,indicating that the early Neoproterozoic magmatism is prevailed in the Alatage area.These zircons have crustal Hf model ages of1.82–2.22 and 1.70–2.03 Ga,respectively,which are significantly older than their crystallization ages.It indicates that their parental magmas were derived from the reworking of ancient crust.However,we suggest that these Paleoproterozoic Hf model ages might result from mixing of continental materials with different ages in the Neoproterozoic crust.The inherited(detrital)zircon cores not only yield a wide age range of ca.989–1617 Ma,but also exhibit large Hf-isotope variations with Hf model ages of1.54–2.30 Ga.In particular,some 1.4–1.6 Ga zircons show high initial176Hf/177Hf ratios,consistent with those of depleted mantle,which indicates that the Mesoproterozoic event involved both reworking of older crust and generation of juvenile crust.The Central Tianshan Block has different Precambrian crustal growth history from the Tarim Craton.Therefore,it would not be a fragment of the Precambrian basement of the Tarim Craton.  相似文献   

4.
The volcanic rocks of the Xiong‘er Group occur widely in the southern part of the North China Craton, which mark the beginning of the cover in the southern part of the North China Craton. The age of the volcanic rocks is thus crucial to understand the tectonic regime and evolutionary history of the North China Craton in the Proterozoic age. Zircons from five volcanic rocks and intrusions were dated by U-Pb SHRIMP method. The results indicate that the Xiong‘er Group formed in 1.80--1.75 Ga of Paleo-Proterozoic. Since the Xiong‘er Group formed earlier than the Changcheng System, the earliest rocks in the Changcheng System is therefore assumed to be formed in 1.75 Ga. A thermal-tectonic event of ca. 1.84 Ga is indicated by new zircon U-Pb SHRIMP ages in the southern part of the North China Craton. The volcanic rocks of the Xiong‘er Group thus represent the initial magmatism of the Paleo-Proterozoic breakup of the North China Craton. Numerous inherited zircons in the volcanic rocks mainly formed in ~2.20 Ga, indicating that the source magma of the volcanic rocks may be derived from the ~2.20 Ga crust, or from a mantle magma with significant contamination of the ~2.20 Ga crust.  相似文献   

5.
A felsic tuffaceous rock, obtained from a metamorphosed sequence of volcanics and sediments of the Hutuo Group, 8 km south of Taihuai in Wutaishan, contains two zircon populations. These record SHRIMP 207Pb/206Pb weighted mean ages of 2180±5 Ma and 2087±9 Ma, respectively. The older date is within error of the age of the Dawaliang Granite in Wutaishan and is considered to be  相似文献   

6.
In situ U-Pb dating and Lu-Hf isotopic analysis were carried out for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southern margin of the North China Craton (NCC). The results provide further constraints on the crustal formation and evolution history of NCC. Four ^207Pb/^206Pb age populations were obtained from 99 analyses, with clusters at -3.40 Ga, 2.77-2.80 Ga, -2.50 Ga and 2.34 Ga, respectively. The 3.40 Ga old zircons have similar Hf isotopic compositions to those from Archean rocks in the Jidong and Anshan areas of NCC. However, crustal remnants older than 3.6 Ga have been identified in the southern margin of NCC, the South China Craton, the northwestern part of the Qinling Orogen and its adjacent area. Thus, it is not easy to trace the source rock from which the 3.40 Ge detrital zircons were derived. It can be inferred that the crustal remnants older than 3.40 Ga might have been widely distributed in the North China Craton. The 2.77-2.80 Ga zircons make up a relatively small proportion and have the highest εHf(t) values (up to 6.1±1.6), consistent with the Hf isotopic composition of the depleted mantle at 2.83 Ga. Their single-stage Hf model age of 2.83 Ga is close to their crystallized age, suggesting that their source rocks were extracted from the contemporaneous depleted mantle. The -2.50 Ga zircon grains constitute about 85% of the total grain population and their Hf isotopic compositions indicate major growth of juvenile crust at -2.50 Ga but minor reworking of ancient crust. The youngest zircon dated in this study gave an U-Pb age of 2337±2.3 Ma, which can be considered the maximum depositional age of the formation of the Songshan Group.  相似文献   

7.
The Quanji Block, situated between the northern margin of the Qaidam Block and the South Qilian orogenic belt in the NE Qinghai-Tibet Plateau, China, is thought to represent a remnant continental crust. In this study, LA-ICPMS U-Pb analyses of detrital zircon grains from two mesosomes in the migmatitic Dakendaban Group yield ages of 2467+28/-26 Ma and 2474+66/-52 Ma, respectively. Zircon grains from a leucosome give two distinct ages of 2471+18/-16 Ma and 1924+14/-15 Ma. Zircon from a granitic pegmatite that intruded into the Dakendaban Group yields an age of 2427+44/-38 Ma. These data suggest that the Early Paleoproterozoic Dakendaban Group deposited between -2.43 to -2.47 Ga and has been subject to an intrusive event at 2.43Ga, and regional metamorphism-anatexis at 1.92 Ga. The common lower intercept age of -0.9 Ga probably records a significant Early Neoproterozoic event in the Quanji Block.  相似文献   

8.
Clastic sediments and sedimentary rocks are widely used for understanding the formation and evolution of the continental crust. The Tietonggou Formation outcrops in the Xiaoqinling region at the southern margin of the North China Craton (NCC) and has unconformable contacts with the underlying Taihua Complex and overlying Paleoproterozoic Xiong’er Group. It mainly consists of quartzite and its protoliths are mature terrigenous clastic rocks. On the basis of the ages of the youngest detrital zircons from the quartzites and the ages of the Xiong’er Group, the depositional ages of the protoliths of the Tietonggou Formation were well constrained to 1.91–1.80 Ga. The U-Pb isotopic data of detrital zircons from the Formation show a major age peak at ~2.1 Ga, which is consistent with 2.2–2.0 Ga magmatism in the Trans-North China Orogen of the NCC. Taking into account the texctural and compositional maturity of the Tietonggou Formation quartzite, the ~2.1 Ga lithologic units in the Trans-North China Orogen are interpreted as the major source of the Tietonggou Formation. The majority of these ~2.1 Ga detrital zircons mostly have high δ 18O values (>6.5‰) and negative ? Hf(t) values (?7.8–0.0), with corresponding Hf model ages significantly older than their crystallization ages, indicating that these zircons formed from the partial melting of ancient continental crust. The majority of the 2.8–2.7 Ga and ~2.5 Ga detrital zircons from the Tietonggou Formation had positive ? Hf(t) values, and mantle-like δ 18O values, suggesting that the NCC has experienced two stages of significant crustal growth in the Neoarchaean at 2.7 and 2.5 Ga, respectively. The Hf isotopic data of detrital zircons from Paleoproterozoic metasedimentary rocks in the Trans-North China Orogen varied mainly toward the reduction of the radiogenic Hf isotope and gradually show a similar trend of the isotope trajectories of crustal evolution. This reveals that the NCC probably has not developed a long-lived subduction to complete the final assembly of the NCC. Alternatively, these maybe imply that the tectonic setting of the NCC substantially changed at ~2.1 Ga, the reduction of the radiogenic Hf isotope could be attributed to the rollback of the subducting slab.  相似文献   

9.
Zircon U-Pb dating indicates that the fuchsite quartzite in eastern Hebei Province was derived from weathering and erosion of the 3.6-3.8 Ga granitic rocks. In-situ zircon Hf analyses show that the Lu-Hf isotopic system remained closed during later thermal disturbances. Zircons with concordant ages have Hf isotopic model ages of about 3.8 Ga, suggesting a recycling of this ancient crust. The -3.8 Ga zircons have similar Hf isotopic compositions to those of chondrite, indicating that their source rocks (granitic rocks) were derived from partial melting of the juvenile crust which originated from a mantle without significant crust-mantle differentiation. Therefore, it is proposed that there was no large-scale crustal growth before -3.8 Ga in eastern Hebei Province. Considering zircon Hf isotopic data from other areas, it is concluded that the most ancient crust in the North China Craton probably formed at about 4.0 Ga, and the possibility to find crust older than 4.0 Ga is very limited.  相似文献   

10.
Zircom U-Pb age and Hf isotope analyses were made on gneissic granite and garnet-mica two-feldspar gneiss from the Helanshan Group in the Bayan Ul-Helan Mountains area, the western block of the North China Craton (NCC). Zircons from the gneissic granite commonly show core-mantle-rim structures, with magmatic core, metamorphic mantle and rim having ages of 2323±20 Ma, 1923±28 Ma and 1856±12 Ma, respectively. The core, mantle and rim show similar Hf isotope compositions, with single-stage depleted mantle model ages (TDM1) of 2455 to 2655 Ma (19 analyses). Most of the detrital zircons from the garnet-mica two-feldspar paragneiss have a concentrated U-Pb age distribution, with a weighted mean 207Pb/206Pb age of 1978±17 Ma. A few detrital zircons are older (2871 to 2469 Ma). The age for metamorphic overgrown rim was not determined because of strong Pb loss due to their high U content. The zircons show large variation in Hf isotope composition, with TDM1 ages of 1999 to 3047 Ma. In com- bination with previous studies, the main conclusions are as follows: (1) protolith of the khondalite se- ries in the Helanshan Group formed during Palaeoproterozoic rather than the Archaean as previously considered; (2) The results lend support to the contention that there is a huge Palaeoproterozoic Khondalite (metasedimentary) Belt between the Yinshan Mountains Block and the Ordos Block in the Western Block of NCC; (3) The widely-distributed bodies of early Palaeoproterozoic orthogneisses in the Khondalite Belt might be one of the important sources for detritus material in the khondalite series; (4) Collision between the Yinshan Block, the Ordos Block and the Eastern Block occurred in the same tectonothermal event of late Palaeoproterozoic, resulting in the final assembly of the NCC.  相似文献   

11.
Basalt and basaltic andesite metamorphosed at greenschist facies occurs with conglomerate layers at the bottom of the Paleopro-terozoic Hutuo Group in the Wutai Mountains area, North China Craton. Detailed geological surveying confirms that these volcanic rocks are conformable within the neighboring sedimentary rocks. The SHRIMP results on basaltic andesite are divided into two groups. In one group the 207Pb/206Pb ages are from 2433 to 2558 Ma, which is consistent with the basement crustal age in Fuping and Wutai areas. In the other group, 13 grains yielded a weighted mean 207Pb/206Pb age of 2140±14 Ma. The latter is interpreted as the eruption age of the basaltic andesite, and gives the age of the base of the Hutuo Group. This result further suggests that the Hutuo Group formed in the middle Paleoproterozoic, not the early Palaeoproterozoic or late Archaean, as thought before, and is related to a 2.2–2.1 Ga rifting event in the Central North China Craton.  相似文献   

12.
Using in situ zircon dating by LA-ICP-MS and MC-ICP-MS, detrital zircon of 3981±9 Ma age was found in metamorphic rocks of the Ningduo Rock Group, Changdu Block of Northern Qiangtang. This is the oldest age record that has been found in the Qiangtang area. This finding also constitutes the third zircon locality in China with an age older than 3.9 Ga. Thus, the discovery provides new information for the study of Hadean crust. In addition, we found 3.51–3.13 Ga, ∼2440 Ma, ∼1532 Ma, ∼982 Ma and ∼618 Ma age peaks from 100 test spots. The younger ages of ∼982 Ma and ∼618 Ma correspond to the formation of the Rodinian super-continent and the Pan-African event, respectively. These findings suggest a close relationship between these zircons and the Gondwanan super-continent. The age of ∼618 Ma defines the lower limit on the deposit time of the protolith for the garnet-mica-quartz schist in the Ningduo Rock Group. Zircons with an age of ∼982 Ma generally display a negative ɛHf(t) and a two-stage Hf model with concentrated ages around 1933–2553 Ma. This pattern indicates that the source area of the Ningduo Rock Group underwent a significant separation of depleted mantle into the crust during the Paleoproterozoic Era. However, zircons with ages of 2854–3505 Ma also show a negative ɛHf(t) and a two-stage Hf model with a concentration of ages around 3784–4316 Ma. These results demonstrate that the source area of the Ningduo Rock Group contains a residual amount of ancient (Hadean) crustal materials. This paper provides new information on the relationship between the basement of the Qiangtang area and the Paleoproterozoic basements of the Gangdese and Himalayan regions, which constrains the northern boundary of Gondwana.  相似文献   

13.
Formation and evolution of Precambrian continental crust in South China   总被引:25,自引:0,他引:25  
The occurrence of zircons with U-Pb ages of ~3.8 Ga and Hf model ages of ~4.0 Ga in South China suggests the existence of the Hadean crustal remnants in South China. Furthermore, a detrital zircon with a U-Pb age as old as 4.1 Ga has been found in Tibet. This is the oldest zircon so far reported in China. These results imply that continental crust was more widespread than previously thought in the late Hadean, but its majority was efficiently reworked into Archean continental crust. On the basis of available zircon U-Pb age and Hf isotope data, it appears that the growth of continental crust in South China started since the early Archean, but a stable cratonic block through reworking did not occur until the Paleoproterozoic. Thus the operation of some form of plate tectonics may occur in China conti- nents since Eoarchean. The initial destruction of the South China craton was caused by intensive magmatic activity in association with the assembly and breakup of the supercontinent Rodinia during the Neoproterozoic. However, most of the Archean and Paleoproterozoic crustal materials in South China do not occur as surface rocks, but exist as sporadic crustal remnants. Nevertheless, the occur- rence of Neoproterozoic magmatism is still a signature to distinguish South China from North China.  相似文献   

14.
U-Pb dating for fifty-six detrltsl zircons from a paragneiss in Nanxiong area, northern Guangdong Province, Indicates that the latest Neoproterozoic sediments in Cathaysia hinterland are composed of numerous Grenvillian and Necerchaean clasUc materials, as well as some Mesoproterozolc detritus. Minor Paleoarchaean (3.76 Ga) and Mesoarchaean (3.0-3.2 Ga) zircons, which are the oldest zircons In South China, also are firstly found in the sediments, suggesting that the Cathaysia Block may contsln very old materials. The Hf isotope compositions of thirty-seven zircons reveal that these clastlc materials have different origins. Minor zircons crystslllzed from magma generated from relatively juvenile crust, while the parental magma of most zircons was derived from ancient crust. Integration of U-Pb dating and Hf Isotope analysis of these zircons suggests that the generation of juvenile crust in the Cathaysia block mainly occurred at 2.5-2.6 Ga. Mesoarchaean (3.0-3.3 Ga), late Paleoproterozolc (-1.8 Ga) and Paleoarchaean (-3.7 Ga) may also be important episodes of crustal growth. Grenvllllan magmatism is extremely Intense, but it mainly involved recycling of ancient crustal components with little formation of Juvenile crust. The marked presence of -2.1 Ga Hf model ages and the absence of the zircons with crystsllizatlon ages at -2.1 Ga suggest that the parental magma of many zircons was probably derived from the mixed source consisting of Neoarchaean and late Paleoproterozoic materlals.  相似文献   

15.
Sixty-two geologically meaningful U-Pb dates were obtained by using SHRIMP technique for the detrital zircons in three metasedimentary rocks from stratigraphically uppermost parts of the Longshoushan Group in the present study. Eighty percents of these dates range from 1.7 Ga to 2.2 Ga with a peak at 1.8-2.0 Ga and twenty percents from 2.3 Ga to 2.7 Ga. The youngest detrital zircon is dated at 1724±19 Ma which is interpreted as the maximum depositional age of the metasedimentary rocks. Therefore, the age for the diagenesis and lithification of the original sedimentary rocks of the Longshoushan Group before the metamorphism must be younger than 1724±19 Ma. Comparison of the age histograms of these detrital zircons with the ages of the igneous rocks on the surrounding older massifs suggests that the sediments of the Longshoushan Group were most likely derived from the Alaxa Block and Tarim Craton. This implies that the affinity between Alaxa Block and Tarim Craton was strong and that they might have been a unified craton during middle-early Proterozoic time.  相似文献   

16.
Metamorphic basement rocks in the Cathaysia Block are composed mainly of meta-sediments with different ages. New zircon U-Pb geochronological results from the meta-sedimentary rocks exposed in the Zengcheng and Hezi areas, southern Cathaysia Block, show that they consist dominantly of early Neoproterozoic (1.0-0.9 Ga) materials with minor Paleo- to Mesoproterozoic and late Neoproterozoic (0.8-0.6 Ga) components, suggesting that the detritus mostly come from a Grenvillian orogen. The youngest detrital zircon ages place a constraint on the deposition time of these sediments in Late Neoproterozoic. Zircon Hf isotopic compositions indicate that the Grenvillian zircons were derived from the reworking of Mesoproterozoic arc magmatic rocks and Paleoproterozoic continental crust, implying an arc-continent collisional setting. Single-peak age spectra and the presence of abundant euhedral Grenvillian zircons suggest that the sedimentary provenance is not far away from the sample location. Thus, the Grenvillian orogen probably preexisted along the southern margin of the Cathaysia Block, or very close to the south. Similarity in the ages of Grenvillian orogeny and the influence of the assembly of Gondwana in South China with India and East Antarctic are discussed, with suggestion that South China was more likely linked with the India-East Antarctica continents in Early Neoproterozoic rather than between western Laurentia and eastern Australia.  相似文献   

17.
Zircon U-Pb age and Hf isotope, and major and trace element compositions were reported for granite at Quanyishang, which intruded into the Kongling complex in Yichang, Hubei Province. The results show that the Quanyishang granite is rich in silicon and alkalis but poor in calcium and magnesium, and displays enrichment in Ga, Y, Zr, Nb but depletion in Sr and Ba, exhibiting the post-orogenic A-type affinity. 90% zircons from the granite are concordant, and give a middle Paleoproterozoic magmatic crystallization age (mean 1854 Ma). Initial Hf isotope ratios (176Hf/177Hf)i of the middle Paleoproterozoic zircons range from 0.280863 to 0.281134 and they have negative eHf(t) values with a minimum of -26.3. These zircons give the depleted mantle model ages (TDM) of 2.9―3.3 Ga (mean 3.0 Ga), and the average crustal model ages (Tcrust) of 3.6―4.2 Ga (mean 3.8 Ga). A Mesoarchean grain with 207Pb/206Pb age of 2859 Ma has a slightly high TDM (3.4 Ga) but similar Tcrust (3.8 Ga) to the Paleoproterozoic zircons. All these data suggest that the source materials of the Quanyishang A-type granite are unusually old, at least ≥2.9 Ga (even Eoarchean). The event of crustal remelting, which resulted in the formation of the Quanyishang granite in the middle Paleoproterozoic, recorded the cratonization of the Yangtze conti-nent. The process may have relation to the extension and collapse of the deep crust with Archean ages, in response to the transition stage of the assembly and breakup of the Columbia supercontinent.  相似文献   

18.
U-Pb zircon dating by LA-ICP-MS andSHRIMP for one olivine pyroxenite yields complex agepopulations including Mesozoic ages of 97-158 Ma and 228±8.7 Ma, Early Paleozoic ages of 418--427 Ma, Paleoprotero-zoic age of 1844±13 Ma, Neoarchean age of 2541±54 Ma andmiddle Archean age of 3123±4.4 Ma. The 97--158 Ma and228±8.7 Ma zircons show typical igneous oscillatory zona-tion in CL images, suggesting two episodes of magmaticevents. Overlapping of the 97-158 Ma ages with that ofgranulite xenoliths indicates that the Mesozoic granu-lite-facies metamorphism was induced by heating from thebasaltic underplating at the base of the lower crust. Bothprocesses lastcd at least from about 158 to 97 Ma. Ages of 418--427 Ma could be records of the subduction of Mongoliaoceanic crust under the North China craton. Ages of 1.84 Ga,2.54 Ga and 3.12 Ga correspond to the three importantcrust-mantle evolutionary events in the North China craton,and imply preservation of Precambrian lower crust in thepresent-day lower crust.  相似文献   

19.
Origin and tectonic evolution of the Qilian Precambrian basement on NW China were investigated using zircon U-Pb ages with collaborating stratigraphic and paleontological evidence. Zircon grains were separated from two schists, two granitic gneisses and one mylonized gneiss and dated with SHRIMP. Seventy percent of sixty-one detrital zircon ages from two schists ranges from 0.88 Ga to 3.09 Ga, mostly within 1.0 Ga to 1.8 Ga with a peak at 1.6 Ga to 1.8 Ga, and twenty percent varies from 2.0 Ga to 2.5 Ga. A few falls in the Archean and Neoproterozoic periods. The two granitic gneisses were dated 930±8 Ma and 918±14 Ma, whereas the mylonized granitic gneiss was dated 790±12 Ma. These ages represent two periods of magmatisms, which can be correlated with the early and late stages of magmatisms associated with the Jinningian movement on the Yangtze Blocks. The results from this and previous studies indicate that the ages of the Precambrian detrital zircons from the Qilian Block are widely distributed in the Proterozoic era, distinct from the North China Block which was stable in the Neo-Mesoproterozoic era. By contrast, the age histograms of the detrital zircons from the Qilian Block is similar to those from Precambrian basement of the Yangtze Craton. Therefore, it is suggested that the Qilian Block had a strong affinity toward the Yangtze Craton and might belong to the supercontinent Gondwana in the Neoproterozoic time. This inference is supported by Nd model age (TDM), stratigraphic, and paleontological evidence. It is further considered that the Qilian Block was rifted from the supercontinent Gondwana during late Sinian to form an isolated continent in the Proto-Tethyan Ocean, moving towards the Alaxa Block in the North China Craton. The part of Proto-Tethyan Ocean between the Qilian and Alaxa Blocks should correspond to the so-called Paleo-Qilian Ocean. Following the closure of the Paleo-Qilian Ocean in the early Paleozoic, the Qilian Block collided with the Alaxa Block to form the North Qilian Orogenic Belt. Based on this tectonic explanation, the North Qilian ophiolites should represent parts of lithosphere from the Proto-Tethyan Ocean. Lithological and geochronological evidence also indicates that the Qilian Block underwent continental reactivation possibly induced by the deep northward subduction of the North Qaidam Block in early Paleozoic time.  相似文献   

20.
对恒山地区出露的变质火山岩开展岩相学、地球化学、锆石U-Pb年代学和Hf同位素研究,旨在确定其形成时代,探讨岩石成因及地球动力学意义。锆石U-Pb定年结果表明,这些变质火山岩喷发于新太古代晚期(2508±20Ma)。地球化学分析结果显示,恒山变质火山岩由变质玄武岩和变质玄武安山岩组成,SiO2(45.51%~62.67%)、FeOT (4.43%~15.72%)和MgO (3.75%~8.14%)含量变化幅度大,是幔源岩浆经单斜辉石、角闪石和磁铁矿分离结晶的产物。这些变质火山岩富集轻稀土(LREE)和大离子亲石元素(LILE),亏损重稀土(HREE)和高场强元素(HFSE),具有相对高的Th含量和Th/Yb比值,呈现钙碱性岛弧火山岩的特征。结合不相容元素比值Nb/Yb,Zr/Yb和(Nb/La)N的特点,推测其来源于俯冲带具流体交代特征的富集地幔源区。结合区域构造背景,推断恒山变质火山岩形成于新太古晚期大陆弧环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号