首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
有机体系下,采用循环伏安法(CV)在活性炭电极表面电聚合聚苯胺制备聚苯胺/活性炭复合电极,通过循环伏安、恒流充放电和电化学交流阻抗谱(EIS)测试了电极的电化学特性,结果表明,聚苯胺/活性炭复合电极具有良好的电容行为,在-1.0~1.5V参比极为Ag/AgCl,测试区间内具有较大的电化学容量,电极比电容高达276F·g-1,较活性炭电极的比电容92F·g-1有了很大提高.并且交流阻抗法测得活性炭电极的电荷转移电阻Rct为4.9Ω,而复合电极Rct仅2.4Ω.1000次充放电测试后,复合电极比电容仅衰减15.7%.由此表明,在有机体系下聚苯胺/活性炭复合电极是一种具有良好循环寿命和高比电容的复合电极材料.  相似文献   

2.
实验以椰壳颗粒活性炭为载体,活性炭在超声条件下经过碱洗后负载改性,用于吸附CO_2气体.研究在碱洗过程中的碱洗液浓度和超声时间对活性炭的清洗作用的影响,以及在改性过程中的搅拌时间、超声时间、改性剂对改性活性炭的吸附性能的影响,并采用热重分析、比表面积和孔径分析对碱洗后的活性炭、改性活性炭进行表征.结果表明:活性炭的碱洗条件是5 mol·L-1的KOH溶液,超声时间120 min;改性条件是搅拌时间30 min,超声时间100 min,10%(质量分数)的碳酸钾作为改性剂,对CO_2气体的吸附量达到1.5 mmol·g~(-1).研究表明:超声能够促进碱洗液在活性炭孔道中的分散效果,进而增强对活性炭的清洗作用;超声能使改性剂在孔道中良好分布,提高改性活性炭对CO_2气体的吸附性能.改性过程中,超声时间过长会导致孔道坍塌并颗粒破碎,致使吸附性能下降.  相似文献   

3.
探讨了硫酸改性活性炭的制备方法,以及改性炭吸附去除水中Cr(VI)的效果、条件与作用机理.结果表明,硫酸改性活性炭制备方法为:将5 g原炭浸泡在100 mL浓度为1 mol/L的硫酸溶液中改性时间4 h,改性温度60℃.改性炭吸附去除Cr(VI)的最佳方式为:溶液pH值3-5,改性炭投加比为1:100(重量比),(补充单位),Cr(VI)去除率为95.6%(较原炭提高了19.6%).改性炭强化Cr(VI)去除的机理主要是:改性炭表面酸性基团含量显著增加,表面极性和亲水性增强,因而对亲水性的Cr2O72-离子吸附能力增强;且活性炭在改性过程中表面形成了大量带正电荷的基团,强化了与Cr2O72-负离子的异电吸附作用.  相似文献   

4.
作者研究了热处理温度对活性炭支撑的SiOx复合材料电化学性能的影响.分别利用X射线衍射(XRD)、扫描电镜(SEM)、傅立叶变换红外光谱(FT-IR)和元素分析技术对制备的复合材料进行了表征.实验结果表明:热处理温度升高SiOx晶型变好,碳含量降低;热处理温度为900℃时,复合材料表现出最好的电化学性能.首次放电比容量为1 228 mAh·g-1,库伦效率为54%.经过200次循环后,放电比容量为388 mAh·g-1.  相似文献   

5.
中等比表面积高容量活性炭电极材料制备和表征   总被引:2,自引:0,他引:2  
以天然高分子椰壳为原料,采用ZnCl2,预活化和CO2/水蒸气活化的二次活化法制备活性炭.用氮气吸附和傅里叶红外表征活性炭材料的比表面积,孔结构以及表面化学性质.结果显示,所制备的活性炭比表面积和孔径可调,中孔率为16.3%~36.9%.经首步活化的中间炭具有丰富的微孔和表面官能团,并随着第二步活化时间的增加逐渐分解,同时伴随着炭烧失率增加,导致比表面积、孔容和孔径的增大.以制备的活性炭作为电极材料,6 mol·L-1 KOH电解液构成模拟电容器.采用恒流充放电、循环伏安、交流阻抗等方法研究了其电化学性能.结果显示,含氧官能团增加了活性炭表面的润湿性,并对比电容的增加有较大的贡献;而炭材料的比表面积增加对比电容有负面影响.中等比表面积968 m2·g-1样品的比电容达到278 F·g-1,面积比电容高达29μF·cm-2.  相似文献   

6.
研究了提高玉米芯活性炭对CO2气体吸附性能的方法和途径,对自制的玉米芯活性炭进行了氧化改性和还原改性.改性后C元素质量分数都减少了10%左右.经硝酸和硝酸盐氧化改性后其表面含氧官能团明显增多;经碳酸盐碱性还原改性后引入了CO2-3根;经氨水碱性还原改性后引入了大量氨基基团,表明成功地对制备的玉米芯活性炭进行了氧化和还原改性.其中,利用Ca(NO3)2改性后样品对CO2的吸附量比改性前提高了21.2%;经过Na2CO3改性后样品对CO2的吸附量提高了28.5%.因此,制备的玉米芯活性炭经过Na2CO3改性后更有利于其应用于CO2吸附分离.  相似文献   

7.
活性炭比表面积对双电层电容特性的影响   总被引:1,自引:1,他引:0  
用KOH活化活性炭作为电极材料制作双电层电容器,用接触角测定其润湿性,用恒流充放电、循环伏安等方法研究活性炭的电化学性能.结果显示,炭膜浸润时间最短约为90 min,双电层电容器的比电容随比表面积增加而增大.比表面积为1932m2·g-1的炭样在1mol·L-1 的H2SO4电解液(677mA·g-1)中充放电最大比电容为167F·g-1.  相似文献   

8.
采用冷凝回流的方法处理活性炭材料,讨论了硫酸与硝酸不同体积比(2:1、1:1、1:2、1:3)处理的活性炭材料对VO2+/VO2+电化学活性的影响.傅里叶变换红外测试表明,通过混酸处理,活性炭材料上只接入了羟基.比表面积仪和循环伏安分别检测了处理前后样品的表面特性及电化学性能.结果表明,VO2+/VO2+在处理后的碳材料上具有较大的活性,当硫酸与硝酸的体积比为1:2时,处理后的碳材料表现出最好的电化学性能,其ΔEp为154 m V,比未处理碳粉的ΔEp减少了3.3倍,氧化峰电流密度为28.24 m A·cm-2,提高了1.4倍,还原峰电流密度为19.73 m A·cm-2,提高了2.1倍.  相似文献   

9.
还原改性活性炭吸附染料废水及其吸附动力学   总被引:1,自引:1,他引:0  
采用高温氮气、氨水还原改性椰壳活性炭,以增强活性炭表面的非极性。通过BET(Brunauer Eunett,Teller)比表面积、孔径分布、元素分析、FT-IR,零电荷点(pHpzc)等对改性活性炭的孔结构和表面化学性质进行表征。采用静态吸附实验研究了改性活性炭对染料废水的吸附性能。结果表明活性炭通过高温氮气、氨水还原改性能够提高活性炭的表面极性;;并且能够增加活性炭孔数量提高比表面积。500℃氮气氛围和15%氨水还原改性,活性炭的非极性吸附得到显著提高,比原料炭的脱色率提高了22.7%、19.1%;COD的去除率达到96.9%,96.3%。动力学研究表明,改性活性炭对染料废水的吸附符合准二级动力学模型。  相似文献   

10.
以黄芪废渣(AS)为原料,用KOH为活化剂制备黄芪废渣活性炭(ASC)并用于对水溶液中Cu~(2+)和Cd~(2+)的吸附.考察了KOH质量浓度、活化时间、活化温度和浸渍比(活化剂体积(mL):黄芪废渣质量(g))等因素对黄芪废渣活性炭碘吸附值和得率的影响;通过扫描电子显微镜、比表面积测定和X射线衍射等方法对黄芪废渣活性炭进行表征.结果表明,在KOH质量浓度为20%,浸渍比3∶1,温度为600℃,活化炭化时间为80 min时,制备的黄芪废渣活性炭的比表面积为1 519.53 m~2·g~(-1),对重金属离子Cu~(2+)和Cd~(2+)在20℃,pH分别为5.0和6.0时饱和吸附量分别为1.98和1.04 mmol·g~(-1).  相似文献   

11.
通过超声浸渍法对活性炭进行负载Fe(NO_3)_3改性,采用扫描电镜(SEM)、比表面积分析(BET)、质量滴定、红外光谱分析(FT-IR)和Boehm滴定等多种分析方法对未改性活性炭(AC)和改性活性炭(AC-Fe)进行表征,探讨了在不同条件下改性前后活性炭对污水中氨氮的吸附能力和动力学特性.结果表明,经超声浸渍铁元素改性后,活性炭大孔和中孔的孔容积以及比表面积减小,平均孔径略有增大,表面含氧官能团种类基本没有变化. AC-Fe的内酯基、酚羟基及碱基分别增加了12.8%、13. 3%、4. 4%,羧基减少了28. 6%,其等电点由5. 8增大到8. 2.当氨氮质量浓度为10 mg/L,活性炭投加量20g/L,温度5℃时,AC-Fe对氨氮的吸附量为0. 138 mg/g,较AC对氨氮的吸附量提高了29. 0%. Langmuir方程和Freundlich方程均能较好地描述改性前后活性炭对氨氮的等温吸附过程,吸附动力学数据符合准二级动力学方程.  相似文献   

12.
采用FeCl2·4H2O和KMnO4对活性炭进行改性.为获取高效的三价砷去除率,运用正交实验设计结合BP神经网络优化活性炭的改性方案.以FeCl2·4H2O和KMnO4的摩尔总浓度、FeCl2·4H2O和KMnO4物质的量比、水浴温度、干燥温度为正交实验设计因子,每个因子各取5个水平,以三价砷的去除率为目标因子,编制4因素5水平正交设计表.结合BP网络强大的函数拟合功能,以正交设计表中4因素为网络输入层,以三价砷去除率为网络输出层,建立BP神经网络模型,并通过该模型进行预测和优选,得到最佳的活性炭改性方案.即FeCl2·4H2O和KMnO4的摩尔总浓度为0.12mol·L-1,物质的量比为3∶1,水浴温度45℃,干燥温度190℃.此时三价砷的去除率为0.765,与网络预测值0.788相差3.00%.运用X射线衍射及SEM电镜扫描技术对最佳条件下的改性活性炭进行表面性能研究,并测定活性炭表面的铁锰的负载量,为进一步深入研究打下基础.  相似文献   

13.
具有高比表面积和低成本的活性炭是理想的超级电容器电极材料,但其作为电极材料时与金属氧化物电极相比电荷储存能力有所不足,因此通过对活性炭进行改性以提高其比电容成为研究焦点.以柚皮为碳源、硝酸铁为铁源制备柚皮活性炭/纳米Fe_2O_3复合材料,并通过系统表征研究其形态、结构和电化学性能.结果表明:引入纳米Fe_2O_3提高了活性炭的电化学性能,在电流密度为1A/g时,活性炭的比电容为159.6F/g,而复合材料的比电容增至276.0F/g;此外在对称超级电容器中,360W/kg功率密度下的复合材料获得了9.39Wh/kg的能量密度.  相似文献   

14.
文章以碱液对自制的生物质基活性炭进行表面浸洗处理。利用扫描电镜及能谱分析(SEM-EDS)和红外吸收光谱分析(FT-IR)表征碱液浸洗处理前后活性炭的结构及组分变化,利用循环伏安(CV)、交流阻抗(EIS)等方法考察活性炭碱液浸洗处理前后的电化学性能。结果表明,处理后活性炭中硅质量分数明显减少,并在表面引入碳碳叁键,使活性炭的电化学性能显著提高;处理后活性炭的比电容值为320.6 F/g,比原活性炭提高了67.8%;处理后活性炭循环500次后比电容值仍保持98.9%,高于未处理活性炭(90.6%);处理后的活性炭具有良好的可逆特性和理想的电化学特性。  相似文献   

15.
1种以K2SO4水溶液作为电解液的高电压对称型活性炭基超级电容器.采用循环伏安法、恒电流充电/放电、电化学阻抗谱和循环稳定性等电化学方法研究了其电化学性能.结果表明,该电容器的工作电压为1.7V,在电流密度为0.25A·g-1时,单电极比电容高达156F·g-1,在功率密度为213 W·kg-1时能量密度达到38Wh·kg-1(以正负极活性物质的总质量计),等效串联电阻为1.92Ω,3 600s后的漏电流是0.36mA,在400次充放电循环中库伦效率接近100%.该研究结果表明中性的K2SO4水系电解液对探索一种新型高能量密度的超级电容器提供了一种新的可能.  相似文献   

16.
微波法污泥活性炭的制备技术研究   总被引:1,自引:0,他引:1  
以城市污水处理厂污泥为原料,考查了固液比、活化剂浓度、浸渍时间和活化时间等因素对氢氧化钾活化-微波加热制备污泥活性炭碘吸附值和产率的影响.在单因素试验的基础上进行正交试验,获得了此工艺制备污泥活性炭的最佳条件,即:固液比1g:1.5m L,氢氧化钾浓度0.40mol·L-1,浸渍时间24h,活化时间420s.此工艺条件下制备的污泥活性炭碘吸附值为537.63 mg·g-1,比表面积为354 m2·g-1,产率为74.09%,吸附性能和产率均优于传统方法制备的污泥活性炭.  相似文献   

17.
活性炭改性的研究进展   总被引:4,自引:0,他引:4  
介绍了活性炭的改性原理,概述了活性炭物理法改性和化学法改性的研究进展;指出了改性活性炭在"三废"处理中的发展方向是:加强对去除污染物活性炭界面活性剂、活性炭电化学改性、活性炭负载纳米TiO2的光催化与活性炭生物吸附的研究。  相似文献   

18.
本文首先对吸附羽毛水解液中芳香族氨基酸(AA)的活性炭进行筛选,然后对筛选出的活性炭进行酸碱改性。在考察的杏壳、椰壳、果壳、木质和煤质活性炭中,杏壳活性炭对AA吸附、洗脱效果最佳。实验表明:碱改性后的活性炭吸附效果较好,经碱改性的杏壳活性炭的比表面积、总孔容、微孔容均增大,酸改性则相反。Boehm滴定和傅里叶红外光谱(FT-IR)表征结果表明:碱改性后含氧官能团比未改性活性炭大幅减少,酸改性则明显增加。通过单因素试验确定NaOH改性杏壳活性炭对AA的静态吸附-洗脱工艺优化条件:上样液pH为5.6、上样液中酪氨酸质量浓度为2.4 mg/mL、乙醇体积分数为60%。NaOH改性的杏壳活性炭对AA的动态吸附-洗脱工艺优化条件:上样量为320 mL、上样流速为2 mL/min、洗脱流速为1.5 mL/min、洗脱体积为660 mL。在优化条件下,酪氨酸和苯丙氨酸回收率分别为76.3%和73.9%,纯度分别为81.7%和82.9%,表明NaOH改性的杏壳活性炭对羽毛水解液中芳香族氨基酸具有良好的分离纯化效果。  相似文献   

19.
活性炭对印染废水中碱性紫的吸附作用   总被引:4,自引:0,他引:4  
用活性炭吸附模拟废水中的碱性紫染料,研究pH值对吸附性能的影响,得出当pH值为8~10时,对碱性紫的去除率最大.酸性、中性和碱性条件下的饱和吸附量(mg.g-1)分别为233.57、260.38和507.17.同时用KOH进行改性,借助红外光谱表征改性前后活性炭表面官能团的变化,并测定改性后活性炭的吸附等温线.结果表明,KOH的改性使活性炭表面带有更多的碱性基团,增加了吸附活性位,提高对碱性紫的吸附量,中性条件下饱和吸附量达350.77 mg.g-1,比改性前提高35%,吸附等温线符合B.E.T方程.  相似文献   

20.
商业活性炭分别经过1mol/L的硝酸、盐酸、硫酸处理.采用Boehm滴定、傅式转换红外光谱仪(FTIR)、比表面积分析仪对活性炭样品的物化性质进行测试.以甲苯为吸附质,在283K下进行了固定床吸附实验.研究讨论了改性前后活性炭对甲苯的吸附量影响,计算了相应的动力学参数和吸附能.结果表明:酸改性可以增加活性炭表面酸性官能团的总数量;改变孔径分布.酸改性活性炭对甲苯的吸附量大小顺序为:N-AC,S-AC,AC,Cl-AC.准二阶动力学方程比准一阶动力学能更好地描述甲苯在改性活性炭上的吸附过程;酸改性增大了微孔占有率,提高了吸附速度;酸改性增大活性炭吸附有机气体的吸附能,导致酸改性活性炭与甲苯结合度降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号