首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
采用循环伏安法在铂电极表面电化学聚合制备了四氯合金属酸季铵盐([C18H37N(CH3)3]2MCl4,M=Co,Ni,Mn,Cu)掺杂聚苯胺修饰电极.利用扫描电子显微镜(SEM)、红外光谱(FTIR)以及X线衍射(XRD)对复合电极的表面形貌和结构进行了表征;采用循环伏安法、交流阻抗和恒电流充放电测试对电极的电化学性质和电容行为进行了系统研究.结果表明,四氯合铜季铵盐掺杂聚苯胺复合电极的比表面积最大,电容性能最好,在2mA的充电电流下,初始比电容高达389.63F/g.而且,复合电极的循环稳定性良好,循环测试后保持率为96.10%.  相似文献   

2.
以鳞片石墨为原料,采用化学氧化还原法制备了高品质的石墨烯.借助X射线衍射分析、扫描电子显微镜和透射电子显微镜观察、氮气吸附--脱附实验、恒流充放电实验、循环伏安法和交流阻抗谱技术对石墨烯的结构、形貌、表面性能和超级电容性能进行了系统研究.X射线衍射、扫描电镜和透射电镜结果表明,石墨烯整体上呈现无序结构,外观具有蓬松、透明的薄纱状及本征性皱褶,其BET比表面积为14.2m2·g-1,总孔容为0.06cm3·g-1,平均孔径为17.3nm.交流阻抗谱测试结果表明,石墨烯电极具有较小的阻抗,其等效串联电阻为0.16Ω,电荷传递电阻为0.55Ω.恒流充放电和循环伏安测试结果显示:石墨烯电极具有良好的功率特性和循环稳定性,电容特征显著.在2、5、10和20mV·s-1扫描速度下的放电比电容分别为123、113、101和89 F·g-1;即使是50mV·s-1的高扫速,放电比电容仍可达69F·g-1.  相似文献   

3.
以等物质的量的高锰酸钾和乙酸锰为原料,采用机械化学法制备出弱结晶型α-MnO2超级电容器电极材料.在1.2V电压内,200mA·g-1电流密度下对对称型超级电容器进行恒流充放电测试.采用XRD法、循环伏安及交流阻抗法对充放电前后电极材料的结构以及电化学性能进行表征,首次采用求斜率法对充放电曲线分析.结果表明:超级电容器表现出法拉第电容与双电层电容的双重特征;在循环过程中,电化学惰性物质Mn3O4生成,循环伏安图中氧化还原峰逐渐消失;充放电曲线的法拉第电容特征逐渐消失而接近双电层电容理想曲线;超级电容器的比容量、等效串联电阻发生了对应的变化,其最大电极比容量达到416F·g-1,经过近500次循环后,比容量为220F·g-1.  相似文献   

4.
掺锂聚苯胺/活性炭超级电容器电极材料的制备及电性能   总被引:1,自引:0,他引:1  
采用苯胺在改性活性炭表面原位聚合的方法,合成了掺锂的超级电容器用聚苯胺/活性炭复合电极材料.用扫描电镜(SEM)研究了掺杂前后该复合材料的形态.在6mol/LKOH溶液中,以Hg/HgO电极为参比电极对电极材料进行循环伏安、恒流充放电、交流阻抗等电化学性能的测试,考察了掺杂锂盐后作为超级电容器的电极材料的电极性能.结果表明,掺杂锂盐后的复合电极材料的比容量有很明显的提高,由未掺杂锂时的372F/g提高到466F/g。多次循环充放电后电容量的保留率也得到显著的提高。  相似文献   

5.
采用烟煤、椰壳为原料制备活性炭,活化剂为KOH,活化温度为800℃。活性炭的结构和形貌采用N2吸附、扫描电子显微镜(SEM)进行表征,并以其作为超级电容器电极材料进行电化学性能测试,包括恒流充放电、循环伏安和交流阻抗测试。结果表明:煤和椰壳共活化制备活性炭具有一定的协同作用,所制备的活性炭具有高的比表面积(682 m2/g),比电容高达198 F/g,并且具有优良的充放电可逆性以及低的阻抗。  相似文献   

6.
活性炭比表面积对双电层电容特性的影响   总被引:1,自引:1,他引:0  
用KOH活化活性炭作为电极材料制作双电层电容器,用接触角测定其润湿性,用恒流充放电、循环伏安等方法研究活性炭的电化学性能.结果显示,炭膜浸润时间最短约为90 min,双电层电容器的比电容随比表面积增加而增大.比表面积为1932m2·g-1的炭样在1mol·L-1 的H2SO4电解液(677mA·g-1)中充放电最大比电容为167F·g-1.  相似文献   

7.
为研制低成本、高比容超级电容器的关键复合电极材料,采用涂覆热分解法,以RuCl3·2H2O为前躯体,制备二氧化钌/活性炭复合电极材料.借助扫描电镜、附着力测试、循环伏安、恒流充放电和电化学阻抗谱等检测手段,观察复合薄膜电极材料的表面形貌,分析不同涂覆量的二氧化钌/活性炭复合薄膜电极的性能.研究结果表明:二氧化钌/活性炭复合电极材料具有良好的电化学稳定性,涂覆热分解最佳涂覆数为4次,复合薄膜的比表面积为321.4 m2/g,附着力为11.4 MPa;在H2s04溶液浓度为0.5 mol/L、扫描速率20 mV/s条件下,复合电极材料的比电容为422 F/g,内阻为0.33 Ω;经300次充放电后,电容量持续为98.8%.  相似文献   

8.
为提高金属有机框架材料HKUST-1的比电容,将纳米HKUST-1(nHKUST-1)与聚苯胺(PANI)复合,制成超级电容器(nHKUST-1/PANI),并对其进行了循环伏安(CV)、交流阻抗(EIS)、恒电流充放电(GCD)和循环充放电测试。结果显示:在1 mol/L KOH溶液中,纯nHKUST-1为电极,电流密度为1A/g时,比电容值为103F/g;PANI电极的比电容值为344F/g;质量比m(nHKUST-1)∶m(PANI)为1∶1时,复合电极比电容值为238F/g,约为nHKUST电极比电容值的2.2倍;而m(nHKUST-1)∶m(PANI)为1∶2,复合电极电容值为244F/g,约为nHKUST电极比电容值的2.4倍,并且循环1 000次后,比电容值仍保持87%。  相似文献   

9.
用超声波法合成γ相二氧化锰(γ-MnO2),然后通过循环伏安法在γ-MnO2颗粒表面电聚合聚苯胺(PANI),合成PANI/MnO2复合电极. 应用恒流充放电方法测试样品的电化学性能,结果表明γ-MnO2电极材料在电流密度500 mA/g时,比电容为210 F/g,而复合材料电极比电容为500 F/g,相比γ-MnO2电极材料提高了1.38倍.  相似文献   

10.
以酚醛树脂为前驱体,以聚乙二醇为致孔剂,采用聚合物共混法制备超级电容器用中孔炭电极材料. 采用N2吸附法测试了炭材料的比表面积和孔结构参数. 采用恒流充放电、循环伏安、交流阻抗等评价了其在1mol·L-1Et4NBF4/PC有机电解液中的电化学双电层电容性能. 结果表明,酚醛树脂和聚乙二醇等比例共混炭化制备的多孔炭的比表面积为618m2·g-1,中孔率为59.7%,比电容为32F·g-1,大电流性能和循环性能良好.  相似文献   

11.
钴离子对聚苯胺/活性炭复合材料制备与性能的影响   总被引:1,自引:0,他引:1  
采用苯胺在活性炭表面原位化学聚合的方法合成了聚苯胺/活性炭(PANI/AC)复合材料。在合成过程中添加钴盐,并研究了钴离子对复合材料结构和电容特性的影响。利用场发射扫描电镜、傅立叶红外光谱仪对其表面微观形态和化学结构进行了对比分析;在6mol/L KOH电解液中,以Hg/HgO为参比电极对复合材料进行了循环伏安、恒流充放电及交流阻抗等电化学性能的测试。结果表明,添加钴盐改性时聚苯胺在活性炭表面包覆的更均匀,循环伏安结果表明添加钴盐改性时复合材料的电化学活性提高,恒流充放电测试结果显示其电容量从不添加钴盐改性时的387F/g提高到了530F/g,提高了将近38.2%,并且显示出良好的大电流充放特性。  相似文献   

12.
聚苯胺纳米纤维的界面聚合法合成及电化学电容行为   总被引:1,自引:0,他引:1  
利用盐酸和四氯化碳的水/油两相界面,通过界面聚合法合成具有良好纳米纤维结构的聚苯胺,用这种聚苯胺纳米纤维为活性物质制备电极,以1 mol/L H2SO4水溶液为电解液组装超级电容器,通过恒电流充放电、循环伏安、交流阻抗等技术研究其电化学电容行为。研究结果表明,合成的聚苯胺的直径为50~100 nm,长度为500nm至几微米不等,且纤维之间相互交织缠绕,形成网状形貌;聚苯胺纳米纤维电极材料的功率特性与循环性能优于用传统化学氧化法合成的颗粒状聚苯胺材料的性能,在5 mA放电电流下,其比电容可达317 F/g,20mA放电电流下比电容仍维持300 F/g左右,500次循环容量衰减在4%以内。  相似文献   

13.
采用共聚法制备了掺杂磺酸的聚苯胺/多壁碳纳米管复合薄膜,并用其对铂电极进行表面修饰而制备出复合膜电极;通过扫描电子显微镜和红外光谱仪对复合膜电极表面的形态和组分进行表征,并采用电化学方法对其导电性和电催化活性进行测试.结果表明:与聚苯胺电极相比,掺杂磺酸的聚苯胺/多壁碳纳米管复合膜电极的表面形态更均匀致密,导电性能显著提高,响应峰电流从145μA增加到1.61mA,表面电荷密度提高了12.1倍,且稳定性也相应提高;复合膜电极具有较高电催化活性,在草酸环境中对抗坏血酸(AA)的线性响应不受干扰,其线性相关系数为0.996 0,灵敏度为9.09A/(mol·cm2),氧化峰的电位差达到340mV,能够明显区分其混合物.  相似文献   

14.
提出了一种简易、低成本的方法进行神经微电极的性能改进,以改善神经电极/神经组织的界面特性.采用电化学方法合成导电聚合物聚苯胺PANI和PANI-MnO2复合涂层,对神经微电极位点进行表面修饰;对修饰电极的表面形貌与电学性能进行测试,对比分析了MnO2掺杂对PANI涂层的影响.结果表明:MnO2掺杂改善了PANI涂层的表面形貌;与PANI修饰电极相比,PANI-MnO2修饰电极界面通过的电荷量提高了近7倍,电学性能稳定性更好,在神经信号相关的1kHz频率处阻抗降低到原来的1/6,PANI-MnO2复合涂层能更好地提高电极的电学性能.  相似文献   

15.
以商品化活性炭为原料,在1mol/L盐酸环境下采用原位聚合法制备了聚苯胺/活性炭复合材料(PANI/C),复合材料中聚苯胺的质量分数为46.4%.用循环伏安、交流阻抗、恒流充放电测试等方法考察比较了新材料与原活性炭在1mol/L H2SO4溶液中的电容性能.结果表明,新材料的比容量和大电流充放电性能均优于碳材料.3.0mA/cm^2电流密度下,复合材料电极比容量高达448.7F/g,比原碳材料提高60%.  相似文献   

16.
聚苯胺(PANI)是一种导电性良好、光电转化效率高的p型有机半导体.采用旋涂法制备了聚苯胺/氧化铟锡(PANI/ITO)电极,然后通过静电吸附将脲酶(urease)固定在PANI/ITO表面,形成Urease/PANI/ITO复合电极.利用脲酶分解尿素(urea)产生的氨可以改变PANI膜质子化状态,从而影响其光电性能的原理,发展可特异性检测尿素的光电化学(PEC)方法.该方法对尿素的线性检测范围较宽(10-3~10-8mol·L-1),特异性、稳定性和可重现性也较好,可用于人体尿液中尿素含量的测定.  相似文献   

17.
煤基聚苯胺复合材料是以煤为模板,引入苯胺原位聚合制得的导电高分子材料,具有良好的光电性能、氧化还原性和可加工性,应用于防腐蚀、抗静电、二次电池、电极材料和电磁屏蔽等领域.文中综合阐述了近年来煤基聚苯胺制备方法的研究进展,对煤/聚苯胺复合材料制备方法如苯胺抽提/溶胀法、氧化处理法、磺化处理法等做了介绍,探讨了各种处理方法对煤和煤基聚苯胺结构和性能的影响,分析总结了现有方法制备的聚苯胺复合材料的优缺点,并对今后的研究方向作了展望.  相似文献   

18.
纳米导电聚苯胺(PANI),作为超级电容器的电极材料,有着广阔的应用前景.采用三电极体系下的恒定电流法,通过多步电化学聚合获得以导电玻璃(ITO)为基底的纳米结构导电聚苯胺薄膜.采用场发射扫描电子显微镜(FESEM)对薄膜进行形貌表征.由于电极材料的纳米结构,材料的比电容在电流密度为1 A/g及10 A/g下分别为829 F/g及667 F/g.以20 A/g的电流密度对电极进行500次的恒定电流充放电测试,电极的比电容下降为95.1%,显示了较好的循环稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号