首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 531 毫秒
1.
基于相似原理建造钻柱动力学室内模拟试验装置,根据试验数据还原钻柱的实际运动轨迹,并从横向振动、加速度和偏移量等方面对钻柱的运动状态进行定量评价。结果表明:转速是影响钻柱运动特性的决定性因素,低转速时钻柱横向振动频率等于钻柱自转频率,钻柱平均加速度线性增加;高转速时横向振动频率增加为自转频率的两倍,平均加速度发生跃升;钻压对钻柱运动特性影响并不显著;井斜角对钻柱的横向振动幅度和频率均无明显影响,但钻柱的横向偏移量随着井斜角的增大而增加;为了避免钻柱的剧烈振动,实际钻进过程中转速应小于69.4 r/min。  相似文献   

2.
利用水平井钻柱动力学模拟实验装置,进行了水平井井底钻压波动的模拟实验。实验结果表明:水平井井底的钻压波动为一正弦波动,其波动频率与钻柱的自转频率相等,钻压对波动频率的影响不大。水平井井底的实际钻压始终与名义钻压近似相等;随着钻压和转速的增加,水平井井底钻压的波动会变得越稳定。水平井实际钻进时,建议转速大于52.08 r/min,钻压大于90 kN。  相似文献   

3.
超深井钻井过程中钻具失效事故频繁发生,钻柱动力学特性研究对增加钻具安全性具有重要作用。考虑真实井眼轨迹、钻头与地层相互作用、钻柱与井壁接触及钻井液黏滞作用等因素的影响,建立了全井钻柱动力学特性仿真模型,模拟了不同钻压及转速下钻柱不同截面轴向力、扭矩、位移及等效应力等随时间的变化,采用第四强度理论计算了井口钻具的安全系数,校核了超深水平井钻具强度。分析结果表明,井口轴向力和等效应力表现为低频变化,MWD处等效应力和加速度表现为高频振动且其横向振动比轴向振动更加剧烈;在钻压和转速较小的情况下,钻压和转速对井口轴向载荷、井口扭矩、井口等效应力及井口安全系数影响不大;MWD处等效应力随钻压的增加而增大,其横向加速度随转速的增加幅值显著增大;对于井深超过8 000 m、井眼尺寸φ120.65 mm及φ114.3 mm的G105钻杆,动力学分析得到的井口安全系数大部分时间内在1.2附近波动,钻具总体是安全的。  相似文献   

4.
钻柱横向振动是引发钻井事故的主要原因之一,水平井由于井眼弯曲严重,钻柱偏心,容易发生钻柱横向振动。以水平井钻柱单元为研究对象,应用有限元法建立了考虑钻井液影响的钻柱横向振动方程,得出了钻柱横向振动频率数学模型,分析了钻井液和钻井液密度对钻柱横向振动频率的影响规律。编制频率计算程序,结果比较符合现场实际,为计算钻柱共振转速提供依据,减少钻柱剧烈横向振动发生。  相似文献   

5.
直井眼钟摆钻具纵向振动特性的实验研究   总被引:1,自引:0,他引:1  
为了了解直井眼中底部钻柱的纵向振动特性,利用根据相似理论设计出的钻柱动力学模拟试验装置,对不同参数组合下的钟摆钻具组合纵向振动特性进行了模拟实验研究。实验结果表明,钻柱的纵向振动主要与转速和钻压有关。转速一定时,提高钻压有利于减轻钻柱纵向振动;钻压一定时,降低转速有利于减轻钻柱的纵向振动;当对钻具施加的名义钻压一定时,随着转速的增加,平均钻压有减小的趋势。另外,在减小直井底部钻柱纵向振动的问题上存在钻压与转速的优化组合。  相似文献   

6.
为了了解直井眼中底部钻柱的纵向振动特性,利用根据相似理论设计出的钻柱动力学模拟试验装置,对不同参数组合下的钟摆钻具组合纵向振动特性进行了模拟实验研究.实验结果表明,钻柱的纵向振动主要与转速和钻压有关.转速一定时,提高钻压有利于减轻钻柱纵向振动;钻压一定时,降低转速有利于减轻钻柱的纵向振动;当对钻具施加的名义钻压一定时,随着转速的增加,平均钻压有减小的趋势.另外,在减小直井底部钻柱纵向振动的问题上存在钻压与转速的优化组合.  相似文献   

7.
为了研究钻柱在井下的运动状态,采用结构动力学中的Newmark积分法,建立了直井内旋转钻柱动力学三维有限元分析模型。研究了在直井内钻柱不同转速的动力学特性。为了验证数值模拟的正确性,建立了直井内旋转钻柱实验装置,进行了不同转速下的钻柱实验研究。结果表明:随着钻柱转速的增加,横向位移逐渐增大;在不同转速情况下,数值计算结果和实验结果吻合较好,同时也验证了数值模拟的正确性。  相似文献   

8.
为精确的描述水平井钻柱轴向受迫振动规律,本文以连续性波动理论为基础,考虑了钻柱连续特性、库伦阻尼及钻井液粘性阻尼作用和轴向振动工具对钻柱的位移激励,并采用等效粘性阻尼法对库仑阻尼进行线性化处理,建立了轴向振动工具作用下的水平井钻柱运动的动态解析模型;通过Burnett等人发表的轴向振动工具测试实验验证了本文所建模型,并利用数值模拟分析了轴向振动工具的频率及钻柱与井壁间摩擦系数对水平井钻柱轴向受迫振动的影响。结果表明:在一定范围内增加轴向振动工具的振荡频率可提高水平井钻柱的轴向受迫振动响应;钻柱与井壁间摩擦系数对水平井钻柱轴向受迫振动的影响随着钻柱长度的增加而降低。本文的研究方法和模型可为改善轴向振动工具在水平井作业中的作用提供理论指导。  相似文献   

9.
进行水平井段旋转钻进时钻头侧向力的试验研究,并将钻头侧向力分解为方位力和井斜力,以这两个力的变化规律为基础,对待钻井的钻进趋势进行预测。结果表明:随着钻压和转速的增加,方位力和井斜力的变化规律不同,增加钻压,两个力波动的频率变小,波动的能量变大,但方位力的波动频率大于井斜力的波动频率,方位力的波动能量小于井斜力的波动能量;增加转速,方位力的波动频率变大,波动能量几乎不变,井斜力的波动频率变化不大,但波动能量变大;在实际的钻进过程中,为避免"方位漂移"现象的加剧,建议使用较低钻压或者高钻压钻进;为避免井斜加剧,建议使用低钻压和低转速钻进。  相似文献   

10.
煤矿水平井钻柱在钻进过程中,随着钻进深度增加,钻柱在重力作用下与井壁产生复杂的碰撞接触,由此产生的托压效应更加显著,使得钻柱动力学特性随钻进深度增加而发生明显改变,进而影响钻柱的疲劳寿命。基于岩石-钻头-钻柱-井壁耦合动力学分析模型,通过有限元动态仿真,研究了钻进至不同深度下钻柱的纵向、横向和扭转振动特性,分析了钻进过程对钻柱振动特性的影响规律。结果表明:随着钻进深度增加,钻柱纵向跳钻现象呈现“平缓—剧烈—平缓”的趋势,横向扰动呈现“小范围蠕动—大范围扰动—小范围蠕动”的特点,扭转方向剧烈涡动占比呈现先增加后减小的规律,钻柱主要动力学指标与钻进深度呈非线性关系。因此在对钻柱系统进行动态分析及优化时,不能只分析特定深度,应包含整个钻进过程。  相似文献   

11.
推靠式旋转导向钻进时巴掌对井壁的间歇性推靠致使钻柱处于非线性阻尼激励的复杂工作状态,剧烈的振动易引发钻柱的疲劳失效。建立考虑巴掌与井壁的接触碰撞及动态激励的底部钻具组合动应力计算模型,分析钻柱转速对钻柱动应力和钻头侧向力的影响。结果表明:钻井过程中底部钻具组合动应力和钻头侧向力处于剧烈波动状态,尤其在临界转速下运动的钻柱将产生剧烈的振动及较高水平的动应力,导致钻柱出现疲劳破坏;通过调节钻柱转速至两阶相邻转速中间值,可显著降低钻柱的振动加速度。现场试验验证了通过调节钻柱转速提高底部钻具组合动态安全的可行性,为推靠式旋转导向及同类工具安全钻进参数的优化设计提供了依据。  相似文献   

12.
目前,对隔水管的振动研究鲜有涉及深水钻井工况对其横向振动特性的影响。为此,采用牛顿法建立了隔水管横向振动流固耦合模型,利用微分变换法(DTM)对模型进行求解,分析了钻井液排量与密度、张力比、钻柱结构等因素对隔水管横向振动固有频率的影响规律。结果表明,钻井液的存在会减小深水隔水管横向振动固有频率;隔水管横向振动固有频率随钻井液密度的增加而降低,随张力比的增加而增大;钻井液排量和钻柱尺寸对隔水管的横向振动固有频率影响不大。该研究可用于指导深水钻井作业,优化深水钻井工艺参数。  相似文献   

13.
本文建立了钻机—钻柱—减震器振动系统的力学模型及其运动方程,求得了钻铤柱不同长度和减震器不同位置对钻柱纵振影响的数值,因而发现:钻铤柱长度的改变仅对系统纵振的固有低频产生明显影响;钻柱振动位移亦随钻铤拄长度增加而增加;还发现钻柱固有纵振与固有扭振具有同时激励的可能;证实了减震器的效果以安装于钻机与钻柱之间较为理想,它既降低了转盘临界转速,又减小了各部分振动位移。最后指明了使用变刚度弹力阻尼减震器的方向.  相似文献   

14.
针对气体钻井技术在低压油气田开发中出现气体钻井的钻柱振动和钻具破坏的问题,概述了气体钻井面临的钻柱振动问题、钻具破坏问题和解决问题的途径。介绍了位移激励法的钻柱纵向振动分析的数学模型和力学分析软件。对钻井流体粘度对钻柱纵向振动的影响规律进行了研究。数据表明,钻井流体的粘度对钻柱的纵向振动影响较大。在一般情况下, 钻井流体的粘度越小, 钻柱的振动幅度越大。钻井流体的粘度对钻柱振动的共振频率影响不大。气体钻井虽然提高了钻进速度,但同时也对钻具防破坏技术提出了更高的要求。  相似文献   

15.
旋转轴系弯曲振动与扭转振动耦合的分析   总被引:10,自引:0,他引:10  
为进一步提高旋转轴系的安全性 ,研究了旋转轴系弯曲振动与扭转振动耦合问题。通过对推导出的轴系振动微分方程进行分析 ,得到以下结论 :当轴系存在不平衡时 ,弯曲振动与扭转振动之间存在耦合关系 ,而且随着不平衡量的增加 ,耦合作用加强。当转动频率接近于扭转振动固有频率与弯曲振动固有频率之和或之差时 ,可能会发生弯扭耦合共振。弯曲振动引起的扭转振动及扭转振动引起的弯曲振动一般都比较弱 ,对旋转轴系的安全性构成威胁的可能性很小  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号