首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
2.
目的:探讨米非司酮与孕激素受体及糖皮质激素受体相互作用的关系。方法:以放射配体结合实验测定米非司酮与家兔子宫胞浆孕激素受体及大鼠肝细胞浆糖皮质激素受体的相对结合亲和力。结果:与孕酮相比较,米非司酮的相对结合亲和力(RBA)为396.67±25.32,50%抑制浓度(IC50)为(6.61±1.20)nmol/L,P<0.01;与地塞米松相比较,米非司酮的RBA为344.41±57.41,50%IC50为(4.21±1.02)nmol/L,P<0.05。结论:米非司酮与孕激素受体的结合力强于孕酮,具有强的抗孕激素作用和一定的抗糖皮质激素作用。  相似文献   

3.
4.
T Willmann  M Beato 《Nature》1986,324(6098):688-691
Steroid hormones are thought to modulate gene expression through their interaction with receptor proteins. The intracellular localization of unoccupied receptor proteins has been a subject of controversy: free glucocorticoid receptor appears to reside in the cytoplasm and moves to the cell nucleus only after binding the steroid. The purified hormone-bound glucocorticoid receptor has been shown to bind selectively to hormone regulatory elements (HRE) in the vicinity of hormonally-inducible promoters and, in particular, in the long terminal repeat (LTR) region of mouse mammary tumour virus (MMTV). We have tackled the question of whether the hormone itself is required for the interaction of the receptor protein with the HRE. Using monoclonal antibodies to the receptor we find that upon heat-activation the steroid-free glucocorticoid receptor present in rat liver cytosol binds specifically in vitro to the HRE of MMTV. No qualitative differences in the DNaseI-footprints were detected when hormone-free receptor was compared to the hormone-receptor complex or even receptor complexed with the hormone antagonist RU486. We conclude that the steroid ligand is not an absolute requirement for generating the conformation of the glucocorticoid receptor that allows its interaction with the HRE in vitro. An alternative function of the hormone in vivo could be to modulate nuclear partitioning of the receptor.  相似文献   

5.
A central question arising from the model of eukaryotic gene regulation by steroid hormone receptors is whether or not proteins represent pre-existing gene regulatory proteins that are activated on exposure to the extracellular signal. It has been generally believed that the ligand-binding of steroid hormone receptors triggers an allosteric change in receptor structure, manifested by an increased affinity of the receptor for DNA in vitro and nuclear target elements in vivo, as monitored by nuclear translocation. But this model has been challenged by recent reports indicating that glucocorticoid and progesterone receptors bind specifically in vitro to target DNA sequences even in the absence of hormone. On the other hand, it appears that the hormone induces protection in vivo of the glucocorticoid response element of the tyrosine amino transferase gene. Here we show that under conditions permitting minimal in vitro manipulation, the steroid-free glucocorticoid receptor in crude cytosol associates with the hsp90 heat shock protein (relative molecular mass Mr approximately equal to 90,000) to form a large 300K complex, rather than the 94K liganded receptor monomer. More importantly, we have developed an assay to demonstrate the requirement of hormone to dissociate the 300K complex by heat treatment. Specific DNA-binding activity of the receptor becomes apparent in this process, showing that DNA binding occurs but is inhibited in the large heteromeric complex. We propose a model in which receptor function is repressed by association of the receptor with hsp90. Dissociation of this complex is induced by the binding of steroid and is apparently an irreversible process.  相似文献   

6.
7.
8.
Cloning by functional expression of a member of the glutamate receptor family   总被引:52,自引:0,他引:52  
We have isolated a complementary DNA clone by screening a rat brain cDNA library for expression of kainate-gated ion channels in Xenopus oocytes. The cDNA encodes a single protein of relative molecular mass (Mr) 99,800 which on expression in oocytes forms a functional ion channel possessing the electrophysiological and pharmacological properties of the kainate subtype of the glutamate receptor family in the mammalian central nervous system.  相似文献   

9.
10.
A Mikami  K Imoto  T Tanabe  T Niidome  Y Mori  H Takeshima  S Narumiya  S Numa 《Nature》1989,340(6230):230-233
In cardiac muscle, where Ca2+ influx across the sarcolemma is essential for contraction, the dihydropyridine (DHP)-sensitive L-type calcium channel represents the major entry pathway of extracellular Ca2+. We have previously elucidated the primary structure of the rabbit skeletal muscle DHP receptor by cloning and sequencing the complementary DNA. An expression plasmid carrying this cDNA, microinjected into cultured skeletal muscle cells from mice with muscular dysgenesis, has been shown to restore both excitation-contraction coupling and slow calcium current missing from these cells, so that a dual role for the DHP receptor in skeletal muscle transverse tubules is suggested. We report here the complete amino-acid sequence of the rabbit cardiac DHP receptor, deduced from the cDNA sequence. We also show that messenger RNA derived from the cardiac DHP receptor cDNA is sufficient to direct the formation of a functional DHP-sensitive calcium channel in Xenopus oocytes. Furthermore, higher calcium-channel activity is observed when mRNA specific for the polypeptide of relative molecular mass approximately 140,000 (alpha 2-subunit) associated with skeletal muscle DHP receptor is co-injected.  相似文献   

11.
Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A   总被引:182,自引:0,他引:182  
S Green  P Walter  V Kumar  A Krust  J M Bornert  P Argos  P Chambon 《Nature》1986,320(6058):134-139
We have cloned and sequenced the complete complementary DNA of the oestrogen receptor (ER) present in the breast cancer cell line MCF-7. The expression of the ER cDNA in HeLa cells produces a protein that has the same relative molecular mass and binds oestradiol with the same affinity as the MCF-7 ER. There is extensive homology between the ER and the erb-A protein of the oncogenic avian erythroblastosis virus.  相似文献   

12.
The neurohypophyseal hormone arginine vasopressin has diverse actions, including the inhibition of diuresis, contraction of smooth muscle, stimulation of liver glycogenolysis and modulation of adrenocorticotropic hormone release from the pituitary. Arginine vasopressin receptors are G protein-coupled and have been divided into at least three types; the V1a (vascular/hepatic) and V1b (anterior pituitary) receptors which act through phosphatidylinositol hydrolysis to mobilize intracellular Ca2+, and the V2 (kidney) receptor which is coupled to adenylate cyclase. We report here the cloning of a complementary DNA encoding the hepatic V1a arginine vasopressin receptor. The liver cDNA encodes a protein with seven putative transmembrane domains, which binds arginine vasopressin and related compounds with affinities similar to the native rat V1a receptor. The messenger RNA corresponding to the cDNA is distributed in rat tissues known to contain V1a receptors.  相似文献   

13.
The antidiuretic effect of arginine vasopressin (AVP) is mediated by renal-type (V2) receptors linked to adenylyl cyclase. We report here the cloning of the rat kidney V2 AVP receptor complementary DNA that encodes a 370-amino-acid protein with a transmembrane topography characteristic of G protein-coupled receptors, and with similarity to the V1a (hepatic) AVP receptor in its seven membrane-spanning domains. Expression of the cloned cDNA in mammalian cells showed specific ligand binding and activity characteristic of the native V2 AVP receptor. The receptor messenger RNA is detected only in the kidney. The human V2 receptor gene has been localized to the long arm of the X chromosome close to the locus for nephrogenic diabetes insipidus, an X-linked recessive disorder characterized by renal resistance to the antidiuretic action of AVP.  相似文献   

14.
Multiple D2 dopamine receptors produced by alternative RNA splicing   总被引:16,自引:0,他引:16  
Dopamine receptor belong to a large class of neurotransmitter and hormone receptors that are linked to their signal transduction pathways through guanine nucleotide binding regulatory proteins (G proteins). Pharmacological, biochemical and physiological criteria have been used to define two subcategories of dopamine receptors referred to as D1 and D2. D1 receptors activate adenylyl cyclase and are coupled with the Gs regulatory protein. By contrast, activation of D2 receptors results in various responses including inhibition of adenylyl cyclase, inhibition of phosphatidylinositol turnover, increase in K+ channel activity and inhibition of Ca2+ mobilization. The G protein(s) linking the D2 receptors to these responses have not been identified, although D2 receptors have been shown to both copurify and functionally reconstitute with both Gi and Go related proteins. The diversity of responses elicited by D2-receptor activation could reflect the existence of multiple D2 receptor subtypes, the identification of which is facilitated by the recent cloning of a complementary DNA encoding a rat D2 receptor. This receptor exhibits considerable amino-acid homology with other members of the G protein-coupled receptor superfamily. Here we report the identification and cloning of a cDNA encoding an RNA splice variant of the rat D2 receptor cDNA. This cDNA codes for a receptor isoform which is predominantly expressed in the brain and contains an additional 29 amino acids in the third cytoplasmic loop, a region believed to be involved in G protein coupling.  相似文献   

15.
Excitatory amino acids (EAAs) are important neurotransmitters in the vertebrate central nervous system. Electrophysiological and ligand-binding studies indicate that at least three different receptor subtypes for EAAs exist--N-methyl-D-aspartate, kainate and quisqualate receptor subtypes--on the basis of the preferred agonist of the receptors. We recently purified a kainate-binding protein (KBP) from frog (Rana pipiens berlandieri) brain by domoic acid (a high-affinity kainate analogue) affinity chromatography, and showed that the kainate-binding activity was associated with a protein of relative molecular mass 48,000 (Mr 48 K). The pharmacological properties and the anatomical distribution of KBP were consistent with those of a kainate receptor-ionophore complex. We have now isolated a complementary DNA encoding KBP of Mr 48 K. The deduced amino-acid sequence of the KBP has similar hydrophobic profiles to those found in other ligand-gated ion channel subunits, and shows some amino-acid sequence similarities to the corresponding regions of brain nicotinic acetylcholine receptor subunits. Localization of the KBP messenger RNAs by in situ hybridization histochemistry is compatible with the results of immunohistochemistry and receptor autoradiography studies. COS-7 cells transfected with the cDNA encoding the KBP show high-affinity kainate-binding activity with pharmacological properties similar to those of the biochemically purified KBP. These results provide the first molecular characterization of an EAA-binding site and raise the possibility that the KBP cDNA encodes a ligand-binding subunit of a kainate receptor-ionophore complex.  相似文献   

16.
S Kondo  A Shimizu  M Maeda  Y Tagaya  J Yodoi  T Honjo 《Nature》1986,320(6057):75-77
Interleukin-2 (IL-2) in combination with the IL-2 receptor has an essential role in antigen-stimulated proliferation of T lymphocytes. It has been proposed that the constitutive expression of the IL-2 receptor on adult T-cell leukaemia (ATL) cells may be associated with transformation of T cells. Although we and others have isolated complementary DNA clones encoding a protein that binds IL-2, formal proof that this protein is the IL-2 receptor requires demonstration of IL-2-dependent growth stimulation of cells expressing the protein. In addition, a functional assay system other than binding of IL-2 is required to investigate the molecular mechanism of signal transmission through the IL-2 receptor using artificially mutated cDNA. The IL-2 receptor expressed in non-lymphoid cells by cDNA transfection did not mediate a growth signal, implying that lymphoid cells expressing the functional receptor might have specific accessory molecule(s) for signal transmission by the receptor. Therefore, we established a line of IL-2-dependent mouse cells (CT/hR) expressing both murine (endogenous) and human IL-2 receptors. Here, by blocking the endogenous mouse IL-2 receptors with monoclonal antibodies, we show that the human IL-2 receptor of CT/hR cells is functionally active. Although CT/hR expressed the human IL-2 receptor constitutively, growth of these cells was strictly dependent on IL-2, indicating that uncontrolled over-expression of the IL-2 receptor was not by itself sufficient for T-cell transformation.  相似文献   

17.
Fast excitatory transmission in the vertebrate central nervous system is mediated mainly by L-glutamate. On the basis of pharmacological, physiological and agonist binding properties, the ionotropic glutamate receptors are classified into NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate) and kainate subtypes. Sequence homology between complementary DNA clones encoding non-NMDA glutamate receptor subunits reveals at least two subunit classes: the GluR1 to GluR4 class and the GluR5 class. Here we report the cloning and expression of a functional rat glutamate receptor subunit cDNA, GluR6, which has a very different pharmacology from that of the GluR1-GluR4 class. Receptors generated from the GluR1-GluR4 class have a higher apparent affinity for AMPA than for kainate. When expressed in Xenopus oocytes the homomeric GluR6 receptor is activated by kainate, quisqualate and L-glutamate but not by AMPA, and the apparent affinity for kainate is higher than for receptors from the GluR1-GluR4 class. Desensitization of the receptor was observed with continuous application of agonist. The homomeric GluR6 glutamate receptor exhibits an outwardly rectifying current-voltage relationship. In situ hybridizations reveal a pattern of GluR6 gene expression reminiscent of the binding pattern obtained with [3H]kainate.  相似文献   

18.
Identification of a new class of steroid hormone receptors   总被引:54,自引:0,他引:54  
V Giguère  N Yang  P Segui  R M Evans 《Nature》1988,331(6151):91-94
The gonads and adrenal glands produce steroids classified into five major groups which include the oestrogens, progestins, androgens, glucocorticoids and mineralocorticoids. Gonadal steroids control the differentiation and growth of the reproductive system, induce and maintain sexual characteristics and modulate reproductive behaviour. Adrenal steroids also influence differentiation as well as being metabolic regulators. The effects of each steroid depend primarily on its specific receptors, the nature of which could therefore provide a basis for classification of steroid hormone action. The successful cloning, sequencing and expression of the human glucocorticoid (hGR) (ref. 1), oestrogen (hER), progesterone (hPR), and mineralocorticoid (hMR) receptors, complementary DNA, plus homologues from various species, provides the first opportunity to study receptor structure and its influence on gene expression. Sequence comparison and mutational analysis show structural features common to all groups of steroid hormone receptors. The receptors share a highly conserved cysteine-rich region which functions as the DNA-binding domain. This common segment allows the genome to be scanned for related gene products: hMR cDNA for example, was isolated using an hGR hybridization probe. In this study, using the DNA-binding domain of the human oestrogen receptor cDNA as a hybridization probe, we have isolated two cDNA clones encoding polypeptides with structural features suggestive of cryptic steroid hormone receptors which could participate in a new hormone response system.  相似文献   

19.
Angiotensin II elicits different responses which affect cardiovascular, neuronal and electrolyte transport regulation. To understand the mechanisms responsible for its various actions, the receptor for angiotensin II has long been sought, but numerous attempts to purify the receptor have been unsuccessful owing to its instability and low concentration. We report here the expression cloning of a complementary DNA encoding a bovine angiotensin II receptor to overcome these difficulties. The receptor cDNA encodes a protein of 359 amino-acid residues with a transmembrane topology similar to that of other G protein-coupled receptors. COS-7 cells transfected with the cDNA expressed specific and high-affinity binding sites for angiotensin II, angiotensin II antagonist and a non-peptide specific antagonist for type-1 receptor. Dithiothreitol inhibited ligand binding. The concentration of intracellular Ca2+ and of inositol-1,4,5-trisphosphate increased in the transfected COS-7 cells in response to angiotensin II or angiotensin III, indicating that this receptor is the type-1 receptor for angiotensin II. Northern blot analysis revealed that the messenger RNA for this receptor is expressed in bovine adrenal medulla, cortex and kidney.  相似文献   

20.
The glucocorticoid receptor of rat liver recognizes nucleotide sequences near the promoter of mouse mammary tumour virus (MMTV) required for hormonal induction in gene transfer experiments. Similar nucleotide sequences have been found in the human metallothionein gene IIA and in the chicken lysozyme gene, the later induced also by oestrogen, progesterone and androgens. In microinjection experiments, deletion of only 44 base pairs (bp) of the lysozyme promoter (from -208 to -164) results in coordinated loss of progesterone and glucocorticoid-dependent gene expression. We show here that purified glucocorticoid receptor from rat liver and progesterone receptor from rabbit uterus yield similar or overlapping exonuclease III footprints in the promoter regions of MMTV and chicken lysozyme. Thus, the regulatory elements for different steroid hormones may be similar or at least share structural features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号