首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以氧化铁为铁源,通过简单的固相碳热法制备LiFePO4-MWCNTs复合正极粉体材料.利用XRD和SEM表征LiFePO4-MWCNTs复合材料的结构和表面形貌.利用EIS、CV和充放电测试实验测量LiFePO4-MWCNTs复合材料的电化学性能.XRD结果显示复合材料为橄榄石型的磷酸铁锂纯相,多壁碳管在正极材料中将颗粒相连,增加导电面积,形成三维网络结构,为颗粒之间提供附加的导电通道.通过添加质量分数为5%的多壁碳管的方法对LiFePO4正极材料导电通道进行改善.在0.5C充放电速率下首次放电比容量可以达到151.6mAh/g,充放电50次后,放电比容量还能保持在145.5mAh/g,在1C充放电速率下比容量保持在140mAh/g,2C时比容量保持在130mAh/g.随着充放电速率的增加,锂离子电池的性能也更加优越.  相似文献   

2.
采用高温固相法制备LiNi1/3Co1/3Mn1/3O2,溶胶-凝胶法制备AlPO4包覆LiNi1/3Co1/3Mn1/3O2材料(AlPO4-coated LiNi1/3Co1/3Mn1/3O2).并用XRD、SEM检测等对材料进行了表征,用X-射线衍射、扫描电镜分析以及电化学测试等手段对样品的微观结构、表面形貌和电化学性能进行了研究.结果表明:在AlPO4-coated LiNi1/3Co1/3Mn1/3O2中,AlPO4以无定形态包覆于的表面;AlPO4的存在,阻止了电极与电解质溶液之间的副反应,降低了电极的表面膜阻抗和电荷转移阻抗,加快了锂离子的扩散速度,使得LiNi1/3Co1/3Mn1/3O2的循环性能和倍率性能显著改善.  相似文献   

3.
以无水乙醇为溶剂,醋酸锂、钛酸丁酯和石墨为原料,采用湿法制备了Li4Ti5O12/石墨复合材料.采用X-射线衍射、红外光谱、扫描电镜和电化学测试等对合成产物进行了表征.结果表明:600 ℃氩气气氛中煅烧6 h可制得碳质量分数5%左右的Li4Ti5O12/石墨复合材料,其可逆容量达到167.1 mAh·g-1;经80次循环后,0.1C放电时,容量保持率为99.0%,2.0 C放电时容量保持率达到105.1%.与纯Li4Ti5O12相比,Li4Ti5O12/石墨复合材料具有更好的循环性能和倍率性能,是一种优良的锂离子电池负极材料.  相似文献   

4.
以自制的磷酸铁作为铁源和磷源,用高温自生压力法(即RAPET法)合成了LiFe-PO4/C复合材料,分别比较了以葡萄糖、蔗糖或柠檬酸为碳源和以碳酸锂或氢氧化锂为锂源所得LiFePO4/C复合材料电化学性能的影响。利用X射线衍射(XRD)、循环伏安(CV)、交流阻抗(EIS)和充放电测试等方法,分别对样品的晶型和电化学性能等进行了表征和分析。结果表明:以柠檬酸为碳源、碳酸锂为锂源制备的LiFePO4/C复合材料电化学性能更优异,首次放电比容量达到166.1mAh/g。  相似文献   

5.
采用溶剂热法合成了绣球花状Co_3O_4纳米材料,并利用扫描电子显微镜和X射线衍射仪进行了微观形貌和结构的表征,结果显示样品的形貌为4~6μm绣球花状分级结构微米球,结晶良好,无杂相生成。该绣球花状Co_3O_4纳米材料用做锂离子电池负极材料时表现出很高的可逆比容量和良好的循环性能。在300 m A/g电流密度下,首次放电比容量达1 508 m A·h/g,经过20次循环可逆比容量为1 300 m A·h/g。其良好的电化学性能归功于绣球花状Co_3O_4材料的独特形貌,其多级结构能够缩短锂离子的传输路径,并且拥有足够大的孔隙,来适应和缓解电极材料在循环过程的体积效应。  相似文献   

6.
采用水热合成和煅烧制备氧化钴/碳(Co3O4/C)复合材料,通过SEM、XRD、N2吸附实验等对该材料进行表征.制备的Co3O4/C复合材料为5μm大小,孔径约为30nm的多孔球形结构.在6mol/L的氢氧化钾溶液中进行电化学测试.结果表明,Co3O4/C复合材料具有良好的电容性能.在电流密度为1A/g时,比电容为143F/g.此外,Co3O4/C复合材料还表现出良好的循环稳定性,在1A/g的电流密度下,充放电循环1000次后,比电容保持率为77.8%.  相似文献   

7.
A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the obtained Co3O4 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and analyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4 particles with a diameter of 30 nm, which were obtained under the optimum conditions of a precursor reaction temperature of 30℃, 0.25 mol/L Co2+, and a calcination temperature of 350℃, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.  相似文献   

8.
以添加Na2CO3和NH3.H2O为络合剂的微波多元醇法制备碳纳米管载Pd催化剂(Pd/MWCNTs),并考察了络合剂对催化剂甲酸电催化氧化性能的影响。结果表明,NH3.H2O络合剂制备的Pd/MWCNTs催化剂,其Pd晶粒平均粒径最小(5.2 nm),对甲酸氧化的催化活性和稳定性最好。NH3.H2O与PdCl2能形成络合物,可能会促进微波合成中碳纳米管上形成均匀分散且较小粒径的Pd粒子,因此提高了催化剂的甲酸氧化催化性能。  相似文献   

9.
熔融盐法合成球形锂离子电池正极材料LiNi_(0.8)Co_(0.2)O_2   总被引:2,自引:1,他引:1  
采用热分析法对不同组成的LiOH-LiNO3二元体系进行研究,绘制了具有最低共熔点的该二元体系T-x相图,该体系的最低共熔点为175.7℃.利用低共熔混合物LiNO3-LiOH为锂盐,与前驱体球形Ni0.8Co0.2(OH)2混合烧结制备出了球形锂离子电池正极材料LiNi0.8Co0.2O2.探讨了Li/(Ni+Co)摩尔比、合成温度、合成时间等因素对产品的影响.X射线衍射分析表明合成的材料具有规整的层状NaFeO2结构,SEM表明所得材料为球形.充放电测试表明在3.0~4.3的电压范围内,首次放电比容量可达170 mAh.g-1,充放电效率为95.5%.结果表明采用该工艺可以制备出电化学性能良好的LiNi0.8Co0.2O2正极材料.  相似文献   

10.
为研究离子掺杂对锂离子正极材料LiNi1/3Co1/3Mn1/3O2的影响,采用氢氧化物共沉淀法制备了Ti4+掺杂改性的锂离子正极材料LiNi1/3-1/40Co1/3Mn1/3Ti1/40O2、LiNi1/3-Co1/3-1/40Mn1/3Ti1/40O2和LiNi1/3Co1/3Mn1/3-1/40Ti1/40O2,并运用X射线衍射仪和扫描电子显微镜对Ti掺杂改性后正极材料的晶型和微观结构进行表征,通过高精度电池性能检测系统对正极材料的电化学性能进行检测.结果表明:Ti分别取代Ni、Co和Mn对三元复合正极材料进行掺杂改性后,改性材料都保持典型的α-NaFeO2层状结构,且晶型良好;LiNi1/3-Co1/3Mn1/3-1/40Ti1/40O2轮廓最分明,且形貌均一;3种改性材料的电化学性能均有一定程度的提高,其中LiNi1/3Co1/3Mn1/3-1/40Ti1/40O2提高最为明显,在0.1 C、1.0 C和2.0 C倍率下其首次放电比容量分别为145.35、140.79和125.60 mA.h/g,1.0 C倍率下循环30次后的容量保持率为88.06%.  相似文献   

11.
以氢氧化锂为锂源,在真空条件下合成了锂离子电池正极材料LiFePO4.采用X射线衍射(XRD)、扫描电镜(SEM)对样品进行表征,并对其进行电化学交流阻抗(EIS)、循环伏安(CV)和恒流充放电等电化学性能测试,并与以碳酸锂为锂源制得的材料进行比较.结果表明:两种锂源在真空条件下合成的LiFePO4均具有单一的橄榄石相,而以氢氧化锂为锂源所得的材料粒度更小且分布更均匀,比容量更高.此外,以氢氧化锂为锂源时,通过在原料预烧后的前驱体中引入碳源得到的LiFePO4/C复合正极材料在0.2 C和1.0 C时的首次放电容量分别为138.4 mAh/g和126.8mAh/g,循环30次后仍能分别释放出135.6 mAh/g和123.9 mAh/g的可逆容量.  相似文献   

12.
在磁控溅射系统中利用Co靶和Co3O4靶制备了Co/Co3O4双层膜.振动样品磁强计(VSM)结果显示在测量温度高于Co3O4的奈耳温度时,交换偏置场HE仍然存在,多功能光电子能谱(XPS)分析表明在靠近Co层一侧Co3O4层被还原成一薄层的CoO.当Co3O4层的厚度低于3.5 nm时,Co3O4完全被还原成CoO.  相似文献   

13.
通过正交实验法,采用流变相法制备了LixCoyNizMn2-y-zO4的25个样品(x=1、1.02、1.04、1.06、1.08,y=0、0.025、0.05、0.075、0.1,z=0、0.025、0.05、0.075、0.1),并对其电化学性能进行了研究从而选择出最佳原料配比。实验结果表明从首次放电比容量来考察LiCo0.05Mn1.95O4的性能最好,从第20次容量保持率来考察Li1.06Co0.1Ni0.075Mn1.825O4的性能最好。  相似文献   

14.
以LiOH.H2O,V2O5,WO3以及柠檬酸为原料采用流变相法合成了锂钒氧化合物LiWxV3O8(x=0,0.01,0.03,0.05).利用XRD对目标产物的结构进行表征,结果表明:掺杂前后LiWxV3O8均为单斜结构,但掺杂后晶胞参数a和c值与纯相LiV3O8相比略有增加,有利于锂离子在晶体结构中的迁移.同时,对该材料的电化学性质进行测试,结果发现:掺杂后样品的循环性能相对纯相LiV3O8均有所提高,尤其是LiW0.01V3O8电化学性能最为优异,首次放电比容量达238 mAh/g,经过40次循环后容量为185 mAh/g.交流阻抗谱也表明了LiW0.01V3O8具有较小的电荷传输阻抗.对LiW0.01V3O8具有较好电化学性能的原因进行了初步讨论.  相似文献   

15.
采用草酸盐共沉淀法合成一系列的Li(Ni1/3Co1/3Mn1/3)1-xCrxO2正极材料(0 ≤x ≤0.1),用X射线衍射仪(XRD)和扫描电子显微镜(SEM)分析合成产物的晶体结构及表面形貌;利用充放电仪测定了产物的电化学性能.结果表明,合成的Li(Ni1/3Co1/3Mn1/3)1-xCrxO2( x = 0.01,0.03,0.05,0.07) 均保持α-2NaFeO2 层状结构相,属于空间R3m点群.Li(Ni1/3Co1/3Mn1/3)0.95Cr0.05O2的电化学性能最佳,首次放电容量达158.6 mAh/g,在2.5~4.5 V区间30次循环后比容量衰竭率仅为3.92%.Li(Ni1/3Co1/3Mn1/3)0.95Cr0.05O2和Li(Ni1/3Co1/3Mn1/3)CrO2 的电极阻抗变化不同,进而影响其电化学性能.  相似文献   

16.
以固相反应法合成了尖晶石型Li4Ti5O12电极材料,通过掺杂Mg以提高其导电性及综合性能.XRD 表征了材料的结构特征,并通过激光粒度分析仪进行了粒度分析;用循环伏安、充放电曲线和循环次数考察了掺杂产物的电化学性能;在0.1C的放电倍率下放电,Li4Ti5O12的首次放电容量为158 mAh/g,结果表明掺杂了Mg的LiTiO产品的电化学性能和循环性能得到了很大改善.  相似文献   

17.
以醋酸锂、醋酸锰和硝酸银为原料,采用柠檬酸络合燃烧法制备LiMn2O4/Ag复合材料.通过X射线衍射、扫描电子显微镜、恒电流充放电以及交流阻抗技术分析和检测合成产物的物相、形貌及电化学性能.结果表明:LiMn2O4/Ag复合材料由LiMn2O4和金属Ag组成,银均匀地分布在LiMn2O4颗粒中;与LiMn2O4相比,LiMn2O4/Ag复合材料具有更高的比容量、更高的库伦效率和更低的极化;Ag的添加可提高LiMn2O4的循环性能,尤其是高倍率充放电循环性能.  相似文献   

18.
Surface deterioration occurs more easily in nickel-rich cathode materials with the increase of nickel content. To simultaneously pre-vent deterioration of active cathode materials and improve the electrochemical performance of the nickel-rich cathode material, the surface of nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material is decorated with the stable structure and conductive Li3PO4 by a facile method. The LiNi0.6Co0.2Mn0.2O2–1wt%, 2wt%, 3wt%Li 3PO4 samples deliver a high-capacity retention of more than 85% after 100 cycles at 1 C under a high voltage of 4.5 V. The effect of different coating amounts (0–5wt%) for the LiNi0.6Co0.2Mn0.2O2 cathode is analyzed in detail. Results show that 2wt% coating of Li3PO4 gives better performance compared to other coating concentrations. Detailed analysis of the structure of the samples during the charge?discharge process is performed by in-situ X-ray diffraction. It is indicated that the modification for LiNi0.6Co0.2Mn0.2O2 cathode could protect the well-layered structure under high voltages. In consequence, the electrochemical performance of modified samples is greatly improved.  相似文献   

19.
采用溶胶-凝胶法制备了单斜结构的LiFeBO3/LBO复合材料(C2/c 空间群).通过XRD,SEM,充放电测试、循环伏安、交流阻抗等手段分别对结构、形貌和电化学性能进行了研究.结果表明,与不含LBO的LiFeBO3相比,复合材料具有较高的放电比容量和良好的循环性能,尤其是当复合材料中含有15.1%LBO时,该材料在C/20倍率下获得了194.6 mAh/g的首次放电比容量,100次循环后放电比容量仍维持在137.0 mAh/g.循环伏安和交流阻抗测试结果也表明,LBO含量为15.1%的复合材料中LiFeBO3粒子之间的导电性明显得到改善.  相似文献   

20.
The lithium-rich layered oxides are one of the most attractive cathode materials for lithium-ion batteries.Here,two types of Li1.20Ni0.32Co0.004Mn0.476O2 were synthesized using Li2CO3 and LiOH as lithium sources.An electrochemical activation process occurs in Li1.2Ni0.32Co0.004Mn0.476O2 prepared from Li2CO3(LLO-1),while no obvious activation in Li1.2Ni0.32Co0.004Mn0.476O2 prepared from LiOH(LLO-2) is observed.Via advanced scanning transmission electron microscopy(STEM),we found that Li2MnO3-like structure is rich in the surface region of LLO-2.The study provides a direct explanation for the electrochemical activation of lithium-rich materials.The sample with more LiMO2-like phase at the surface region shows a better cycling performance.It is likely that more LiMO2-like phase at the surface region could stabilize the interface and improve the cycling performance of the Li-rich cathode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号