首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以某钢厂210 t RH装置为研究对象,利用水力模型对现场生产过程进行物理模拟,研究驱动气体流量、顶吹气体流量、枪位、浸入深度和真空度对脱碳速率的影响.结果表明,随顶吹气体流量的增大,脱碳速率明显增大;随插入管浸入深度的增大,脱碳速率略有增大;随真空度的增大、枪位的减小,脱碳速率逐渐增大;驱动气体流量对脱碳速率的影响很小.真空度为3 616 Pa、枪位为40 mm、插入管浸入深度为125 mm、驱动气体流量为4.0 m3/h和顶吹气体流量为4.8 m3/h时,脱碳速率最大.  相似文献   

2.
RH精炼过程循环流量及夹杂去除的水模型研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以某钢厂120tRH真空精炼炉为原型建立水模型,研究不同工艺参数对RH精炼过程钢液循环流量和夹杂去除率的影响。结果表明,钢液循环流量随着驱动气体流量、浸入深度、真空度、气孔数的增大而增大,随处理量的增大而减小,实验室循环流量最佳工艺参数为:气体流量2.8m3/h,浸入深度150mm,真空度3614Pa,气孔数12个;夹杂去除率随驱动气体流量、浸入深度、真空度和气孔数的变化均不是单调的,而是存在一个最佳值使夹杂去除率最高,实验室去除夹杂的合理工艺条件为:气体流量2.2m3/h,浸入深度125mm,真空度为3500Pa,气孔数8个。  相似文献   

3.
泡沫凝胶性质的几种影响因素   总被引:2,自引:0,他引:2  
泡沫凝胶是由含有发泡剂、聚合物和交联剂的溶液在气体作用下发泡形成的,它可以通过与制取普通水基泡沫相似的方法得到。研究了聚丙烯酰胺(PAM)浓度和气体流量对泡沫质量(φ)和气泡尺寸的影响。结果表明:泡沫凝胶的φ值随PAM的浓度和气体流量的增加而增大;φ值超过0.86时其气泡仍接近于球形;泡沫凝胶的气泡平均尺寸随PAM浓度的增大而增加,且浓度越大增加的趋势越明显;泡沫凝胶的气泡平均尺寸随气体流量的增加而增加。另外,还研究了泡沫凝胶体系的稳定性随温度的变化及存放时间对气泡尺寸的影响,可以证实,在30℃以下,泡沫凝胶的稳定性较好,高于35℃时,其稳定性变差;存放时间对泡沫凝胶的气泡尺寸影响非常明显。  相似文献   

4.
为了研究自制的纳米TiO2对环境空气中有机污染物的光催化降解能力,文中通过自制光催化反应系统,研究了纳米TiO2光催化降解甲醛的过程,考察了环境相对湿度、光照强度、气体流量、甲醛初始质量浓度等因素对甲醛的气相光催化降解反应的影响.结果表明:纳米TiO2光催化降解甲醛的最佳相对湿度为50%,适宜气体流量为1.20 L/m in;光降解率并不会随光照强度的增加无限制地增大,甲醛初始质量浓度的增加将降低光催化氧化降解速率.  相似文献   

5.
脉冲电晕等离子体净化有机污染物甲苯的实验研究   总被引:12,自引:0,他引:12  
对脉冲电晕等离子体技术净化有机污染物甲苯进行了实验研究,考察脉冲成形电容、脉冲峰值电压、脉冲频率、气体流量、气体入口质量浓度等因素对净化效率的影响;实验结果表明成形电容有一最佳值;净化效果随峰值电压、脉冲频率增大而升高,随气体流量、进口质量浓度增大而降低。  相似文献   

6.
以孔径1.0μm的管式陶瓷膜为载体制备碳化硅动态膜,对碳化硅动态膜分离油水乳化液的性能进行了研究,考察了油水乳化液的温度、压力、流量、浓度、pH值对分离效果的影响.实验结果表明,在实验考察的操作范围内,稳定渗透通量随温度、流量的增大而增大,随压力的增大先增大后减小,随浓度的增大而减小;在实验考察的操作范围内,截留率随温度、压力、流量、浓度的增大呈现减小的趋势.pH值对油水乳化液的分离影响较大,pH值为中性时分离效果最佳.  相似文献   

7.
优化生物滴滤塔的性能,以提高其对SO2废气的处理效率.在单因素实验的基础上,以气体流量、SO2浓度、温度及pH值作为考察因素,通过设计正交试验,研究其脱硫最佳工艺条件;在最佳工况条件下探讨不同入口浓度、不同填料层高度及喷淋量对脱硫效率的影响.结果表明,各因素对SO2去除率影响大小次序为SO2浓度>温度>气体流量>pH值;最佳工艺条件为气体流量0.9m3/h,SO2浓度1 000mg/m3,pH值2.3~2.4,温度28℃.脱硫率随填料层高度增加而增大, 30L/h喷淋量的脱硫效果较优于24L/h,并且生物滴滤法比较适合于低浓度脱硫.  相似文献   

8.
考虑轴向温度分布和浓度分布,建立了热化学气相淀积反应器中描述粒子粒度及分布的一维反应-凝并模型。研究了AlCl_3-NH_3-N_2体系物系参数和操作参数对AlN超细粒子粒度及分布的影响。温度通过改变反应速率、气体粘度和平均分子自由程等影响AlN粒子的合成,并存在最佳温度分布;随停留时间的增加,AlN粒子粒度增大,几何标准方差GSD减小;反应物浓度升高时,AlN粒子粒度增大,但GSD变化不大。模型化研究结果和实验结果相一致。  相似文献   

9.
实验研究了不同乙炔与氩气流量比R对脉冲等离子体增强化学气相沉积(PECVD)类金刚石薄膜的沉积速率、AFM形貌、膜基结合强度、纳米压痕硬度以及弹性模量的影响。结果表明:薄膜沉积速率随C_2H_2流量的增大而增大,在R为4:1时沉积速率达到最大0.8μm/h;不同气体流量比下薄膜的表面形貌均光滑致密,纳米硬度是316L不锈钢基体的3倍以上;R为3:1时,Raman光谱ID/IG值为最小,对应此流量比下的最高纳米硬度16.1GPa,且粗糙度最低,摩擦系数为0.206。  相似文献   

10.
廖强  田鑫  陈蓉 《自然科学进展》2006,16(6):727-732
将生物膜滴滤塔内的多孔填料简化为由多个管内覆盖有生物膜的竖直毛细管并行排列构成的填料,建立了一个净化低浓度有机废气的代谢产热毛细管模型.在模型中,首先,结合生化反应动力学理论,考虑气液界面、液膜和生物膜内的传质阻力以及氧对微生物生化反应的限制,获得了污染物在生物膜滴滤床内的浓度分布;再运用生化反应代谢产热理论,考虑生物降解和液膜的导热热阻,建立了生物膜和气液两相中的能量方程;最后,对方程进行离散迭代求解,获得了生物膜滴滤床内的温度分布.理论模型预测结果与实验值基本吻合. 计算结果表明:气液流量一定,结构参数不变时,进口污染物浓度越高,滴滤塔出口气体温度也越高;污染物进口浓度一定时,滴滤塔出口气体温度随气体流量的增大而上升,而随着液体流量的增加而下降.  相似文献   

11.
地-气热交换水蒸气回收系统的回收量与温室内的环境要素--地气温度差、相对湿度、通风状况有关.实验结果表明:地气温度差越大(>0),水蒸气回收量就越多,地气温度差等于0℃或小于0℃时,水蒸气回收量为零;回收量越多,相对湿度的降低幅度就越大,相对湿度越高,温室内的水蒸气量就越多;在温室内保持一定的空气流通性,会增加水蒸气回收量.  相似文献   

12.
IntroductionPhasetransitionaccompaniessignificantchangeinmechanicalpropertiesofpolymer.Alargedropofmodulusandenhancedmi cro Brownianmotiononheatingthroughglasstransitionormeltingtemperaturecanbeusedinthemoleculardesignofshapememorypolyurethane (SMPU ) .A…  相似文献   

13.
为研究水蒸气对甲烷燃烧的影响,基于简化的24步甲烷气相反应动力学机理,通过数值模拟的方法研究了在助燃空气和燃料中分别添加同体积的水蒸气对甲烷同轴湍流扩散火焰流场、组分浓度分布及污染物生成的影响,重点分析了中间产物OH基团对燃烧温度、污染物生成的影响.结果 表明:添加水蒸气后,两种加湿方式下整体燃烧室温度均降低,燃料预混水蒸气燃烧方式下降低幅度较大;该模式下对控制污染物排放效果优于空气预混水蒸气,最后基于燃烧稳定性和控制污染物排放确定了一种最优的蒸汽燃料预混比例为71.4% CH4/28.6% H2O.  相似文献   

14.
根据地气温度差原理,设计了一个可安装在温室等农业设施内的水蒸气回收系统——地-气热交换水蒸气回收系统,并对该系统的结构特征进行了实验研究。结果表明:地-气热交换水蒸气回收系统的回收管道口径、长度和空气吸入量与水蒸气回收量成正比。  相似文献   

15.
为了研究烘焙温度和通风量对室内建材散发挥发性有机化合物(VOC)以及室内VOC浓度分布的影响,对现有的VOC散发和传递模型进行了改进.引入温度对建材中VOC的传质系数的影响,并采用文献中的实验数据验证了该模型的正确性.应用该模型计算了建材内部和室内空气中VOC浓度变化.结果表明,换气次数的提高能够加强空气中VOC的稀释,烘焙温度的升高能够加强材料内VOC的传质速率,使VOC向外扩散速率加快,降低建材中剩余VOC的含量,从根源上解决VOC的长期散发问题.从理论上提出和验证了间歇通风烘焙方法是有效降低室内VOC浓度的措施.  相似文献   

16.
郭亮 《清华大学学报》2003,8(5):598-604
The Nusselt number for cross flow of a mixture of air and vapor over a cylinder was measured at moderate Reynolds numbers (3000-7000) for temperatures from 300℃ to 700℃ and for vapor mass fractions of 0. 18 - 0. 35. Results are also presented for a set of three cylinders aligned perpendicular to the flow for the same range of conditions, The effect of the vapor concentration and temperature on the convection coefficients was investigated to develop a modified Zhukauskas correlation. The results show that the Nusselt number increases as the moisture content increases and that the increase is more than could be accounted for by typical models for the property variations of mixtures. The exponent of the vapor concentration term in the modified correlation is 0. 145 for the entire data set indicating the importance of the property variation due to the moisture content.  相似文献   

17.
建立水平式GaAs的金属有机化学气相沉积(metal-organic chemical vapor deposition,MOCVD)数学模型, 采用求解压力耦合方程的半隐式(SIMPLE)算法对反应气体流动进行二维数值模拟, 并基于边界层动量、热量与扩散传质的相关理论分析了薄膜制备过程中化学组分的输运, 以及反应前驱物与气相之间的传热过程. 计算所得的GaAs生长速率与实验结果吻合较好. 同时, 数值讨论了反应器进气流量、操作压力以及基底温度对GaAs生长速率的影响. 薄膜生长的速率峰值随入口气体速度的升高而有所增大, 但薄膜生长逐渐趋于不均匀性. 因此, 选取气流速度为0.104 m/s. 薄膜生长速率随着操作压力的增大而增大, 当压力为6 kPa时, GaAs生长速率较压力为2 kPa时提高了223%, 薄膜具有较好的生长速率和均匀性.基底温度对薄膜生长速率影响显著, 在1 050 K时薄膜有良好的生长速率和均匀性, GaAs生长速率比温度为950 K时提高了123%. 研究结果为优化MOCVD反应条件及其反应器的结构设计提供了理论依据.  相似文献   

18.
室内空气中挥发性有机物污染的研究   总被引:18,自引:0,他引:18  
挥发性有机物(VOCs)是主要的室内空气污染物。根据调查结果和资料分析,探讨了室内VOCs的污染种类和常见组分、污染途径和污染源强;评价了室内VOCs的污染现状;分析了室内VOCs的污染特征和污染规律;并提出我国在室内VOCs污染研究中现存问题和发展方向。  相似文献   

19.
封闭气泡对土壤渗透性影响的研究进展   总被引:2,自引:0,他引:2  
非饱和土体中的部分气体极容易在入渗过程中被封闭在孔隙或裂隙中,形成互不连通的与外界隔绝的封闭气泡.封闭气泡的存在阻碍了水相的流动,使土体的渗透性能降低,从而对土体的入渗速率产生不可忽视的影响.通过阅读相关文献,分析总结了前人的研究成果,从封闭气泡对渗透性影响的相关试验研究以及数值模型等方面,介绍了目前国内外关于封闭气泡的研究进展情况,指出了目前有待解决的问题.  相似文献   

20.
存在温度梯度的竖直壁面Marangoni 凝结换热特性研究   总被引:2,自引:0,他引:2  
对水-酒精混合蒸气在表面存在温度梯度的竖直壁面上的Marangoni凝结换热特性进行了实验研究,并观测了混合蒸气的凝结形态.实验结果表明:凝结表面不同位置的换热系数不同,温度梯度大的位置凝结换热系数较大;当酒精蒸气的质量分数wv=0.5%,1%时,凝结换热系数随过冷度单调减小;当wv≥2%时,凝结换热系数与过冷度的关系为含有最大值的非线性特性关系;在相同条件下,wv=1%时的凝结换热系数最高,wv=0.5%时的次之,wv≥2%以后,凝结换热系数随酒精含量的升高而减小.与仅由浓度梯度引起的Marangoni凝结相比,本实验中由浓度梯度和温度梯度共同驱动的凝结换热更强.初步的理论分析也表明,凝结表面上的浓度梯度和温度梯度共同作用使水-酒精凝结液表面的表面张力梯度增大,Marangoni对流加强,凝结换热进一步强化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号