首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立了直井中用于驱动井下螺杆泵的旋转级次抽油杆柱扭转动力学分析模型 ,推导出了该模型的一种有限差分方程 ,并给出了方程的收敛条件 .模型中利用了级次抽油杆柱联结处扭矩及转角连续条件和转角的泰勒级数展开式 ,使该差分方程适合于级次抽油杆柱组合的情况 .这种模型及其差分方程配以一定的定解条件后 ,不仅可用于地面驱动螺杆泵抽油系统的杆柱组合优化设计、行为预测 ,也可用于该系统的工况诊断以及杆柱强度校核  相似文献   

2.
旋转抽油杆柱扭转振动固有频率分析   总被引:3,自引:0,他引:3  
在对旋转抽油杆柱的扭转振动分析的基础上,给出了各阶扭转振动固有特性参数的计算式。实例计算结果表明:螺杆泵采油系统在700-1800m的正常下泵深度时,常用的单级和二级抽油杆柱的前五阶扭转振动固有频率在26-608r/min,覆盖了螺杆泵采油系统的工作转速区(65-350r/min),这完全不同于有杆泵采油系统。指出:在选定螺杆泵采油系统的工作转速时,应将杆柱的前五阶扭转振动固有频率对应的转速作为约束条件,以避开该转速范围;对于级次杆柱的高阶固有频率,由于其频率相对单级杆柱的增减幅值在2.1%-5.2%之间,可近似按单级杆柱考虑。文中提供的数据可以直接指导螺杆泵采油系统在杆柱组合与系统转速的匹配。  相似文献   

3.
在对旋转抽油杆柱的扭转振动分析的基础上 ,给出了各阶扭转振动固有特性参数的计算式 .实例计算结果表明 :螺杆泵采油系统在 70 0~ 1 80 0 m的正常下泵深度时 ,常用的单级和二级抽油杆柱的前五阶扭转振动固有频率在 2 6~ 6 0 8r/min,覆盖了螺杆泵采油系统的工作转速区 (6 5~3 5 0 r/min) ,这完全不同于有杆泵采油系统 .指出 :在选定螺杆泵采油系统的工作转速时 ,应将杆柱的前五阶扭转振动固有频率对应的转速作为约束条件 ,以避开该转速范围 ;对于级次杆柱的高阶固有频率 ,由于其频率相对单级杆柱的增减幅值在 2 .1 %~ 5 .2 %之间 ,可近似按单级杆柱考虑 .文中提供的数据可以直接指导螺杆泵采油系统的杆柱组合与系统转速的匹配  相似文献   

4.
以油井生产系统为研究对象,采用节点系统分析方法建立了地面驱动螺杆泵井优化设计模型。在力学分析的基础上,推导并建立了地面驱动螺杆泵井抽油杆柱的应力计算模型。矿场验证结果表明,优化设计模型合理,建立的杆柱力学模型计算准确性高,可作为地面驱动螺杆泵井的生产设计和工作状况分析的理论基础和计算工具  相似文献   

5.
地面驱动螺杆泵井节点系统优化设计技术   总被引:2,自引:0,他引:2  
以油井生产系统为研究对象,采用节点系统分析方法建立了地面驱动螺杆泵井优化设计模型,在力学分析的基础上,推导并建立了地面驱动螺杆泵井抽油杆柱的应力计算模型。矿场验证结果表明,优化设计模型合理,建立的杆柱力学模型计算准确性高,可作为地面驱动螺杆井的生产设计和工作状况分析的理论基础和计算工具。  相似文献   

6.
地面驱动螺杆泵采油系统抽油杆柱运动模型   总被引:1,自引:0,他引:1  
根据垂直井地面驱动螺杆泵采油系统的工作特点,利用抽油杆柱的动力学分析结果,建立了抽油杆柱运动模型,并给出了其有限差分解。利用该模型,可以根据在地面测试的光杆扭矩变化规律计算出井筒中任意部位及螺杆泵处抽油杆扭矩的变化情况,也可根据螺杆泵处抽油杆扭矩变化来预测光杆扭矩的变化。为进一步研究地面驱动螺杆泵抽油杆柱的运动特性和采油系统的工作状况提供了理论基础。计算实例表明,该数学模型及其有限差分解法是有效的和稳定的。  相似文献   

7.
以混合杆柱波动方程的求解为手段,分析玻璃钢抽油杆用于大泵强采抽油系统的载荷情况,讨论这类杆柱对油井产量、悬点载荷、杆柱载荷、减速箱扭矩、光杆马力以及水马力的影响,提出用混合杆柱组合可以较好的解决大泵强采中悬点载荷和曲柄扭矩超载的问题.同时,专门对混合杆柱的超行程进行了讨论,指出该杆柱组合选择得当则能发挥玻璃钢抽油杆产生超行程的长处,克服杆柱变形引起的冲程损失,确保油井产液量.还给出了一种与波动方程差分格式具有同级精度的泵处边界条件差分格式.  相似文献   

8.
地面驱动螺杆泵采油系统抽油杆柱运动模型   总被引:17,自引:2,他引:15  
根据垂直井地面驱动螺杆泵采油系统的工作特点,利用抽油杆柱的动力学分析结果,建立了抽油杆柱运动模型,并给出了其有限差分解。利用该模型,可以根据在地面测试的光杆扭矩变化规律计算出井筒中任意部位及螺杆泵处抽油杆扭矩的变化情况,也可根据螺杆泵处抽油杆扭矩变化来预测光杆扭矩的变化。  相似文献   

9.
根据有杆泵抽油系统工作过程所对应的力学行为特征,建立了基于有限元理论的抽油杆柱动力控制方程;针对系统工况诊断这一非常规有限元动力求解问题,提出了适合于杆柱对角线型质量矩阵的有限元──有限差分解法;这种方法的优点在于其适应性强,可以考虑抽油杆接箍的影响并能较方便地处理级次杆连接处的力和位移连续条件.还从理论上证明了求解方法的无条件收敛性,并已经油田近200口油井实际数据验证.最后给出了以文中方法为基础的计算机智能诊断软件对两口油井工况进行诊断的结果.  相似文献   

10.
单螺杆泵采油系统杆柱瞬态动力学模型及应用   总被引:3,自引:0,他引:3  
抽油杆柱运动的数学模型是油井生产系统优化设计、动态特性预测及工况诊断的理论基础.对地面驱动单螺杆泵采油系统进行有限元分析,建立抽油杆瞬态动力学模型,克服以往静力学模型无法动态反映抽油杆柱受力和运动状态的缺点.利用Newmark直接积分方法对动力学模型进行求解,可获得任意位置处抽油杆柱扭矩载荷随时间变化曲线、任意时刻沿井筒侧向位移等.由于模型中运用经典碰撞理论考虑碰撞接触的影响,因此该模型可更加真实地反映抽油杆柱的受力和运动状态,同时为螺杆泵井扶正器设计奠定理论基础.利用该模型编制的软件在二连油田的应用证实了它的准确性和实用性.  相似文献   

11.
地面驱动式单螺杆泵抽油杆的动力学特性   总被引:1,自引:0,他引:1  
应用Timoshenko梁轴模型分析了单螺杆泵抽油杆的动力学特性 ,根据Timoshenko梁轴模型的运动方程得出了单螺杆泵抽油杆柱运动方程的解。该分析方法可求出抽油杆作涡动时的变形 ,有效地了解抽油杆的动力特性。这种方法用于从理论上分析地面驱动式单螺杆泵抽油杆动力特性 ,还须进行实际验证。  相似文献   

12.
考虑井眼轨迹的井斜角、方位角、油液等对杆柱抽汲运动的影响,从定向井的多级混合杆抽油杆柱上选取微元体,对该微元体做动力学分析.建立反映抽油杆柱动态变化的波动方程,作为有杆抽油泵系统故障诊断的初始动力学模型.对整个杆柱采用变步长取样和多级杆柱的分界面处特殊处理,利用有限差分法求解偏微分方程,得到杆柱上分界面处和均质段任意位置处的位移表达式.确定初始条件和边界条件,经差分和迭代计算获得抽油泵柱塞位移表达式和载荷表达式,完成最终的建模.以油田提供的4口油井的相关数据为例,代入诊断模型得到了泵功图并对其进行故障诊断.结果表明:定向井有杆抽油泵系统诊断模型的建模方法是正确可行的,数学模型应用可靠,能够支持基于知识和基于数据分析的故障诊断方法.  相似文献   

13.
在地面驱动螺杆泵采油系统中,井口驱动头有相当一部分的能量用于克服管道内油液流动的摩擦阻力,文中对地面驱动螺杆泵采油系统的环空管内油液上升流动摩擦损失进行了理论分析,对不同泵转速下的抽油杆直径及不同的抽油杆直径下的泵转速对流动摩擦压降的影响进行了详细的讨论,并以LGB40-42型螺杆泵为例,对其在不同转速及抽油杆直径下的摩压降进行了计算,理论分析及计算表明,转速与抽油杆直径对流体流动摩擦压降有较显著的影响,实际应用中泵转速的选择应与抽油杆直径相适应,在一定条件下,合理选择泵的转速及国抽油杆直径会使油液流动摩擦阻力显著降低。  相似文献   

14.
在地面驱动螺杆泵采油系统中 ,井口驱动头有相当一部分的能量用于克服管道内油液流动的摩擦阻力 .文中对地面驱动螺杆泵采油系统的环空管内油液上升流动摩擦损失进行了理论分析 ,对不同泵转速下的抽油杆直径及不同抽油杆直径下的泵转速对流动摩擦压降的影响进行了详细的讨论 ,并以 LGB40 - 42型螺杆泵为例 ,对其在不同转速及抽油杆直径下的摩擦压降进行了计算 .理论分析及计算表明 ,转速与抽油杆直径对流体流动摩擦压降有较显著的影响 ,实际应用中泵转速的选择应与抽油杆直径相适应 .在一定条件下 ,合理选择泵的转速及抽油杆直径会使油液流动摩擦阻力显著降低 .  相似文献   

15.
张克岩 《科技促进发展》2010,(6):181-181,183
针对大庆油田螺杆泵井杆管偏磨严重的问题,从偏磨现象入手,建立抽油杆瞬态动力学有限元模型和转子动力学模型,进行杆柱受力分析,确定螺杆泵井杆管偏磨主要原因是由于螺杆泵转子的偏心运动、井身结构等因素所致。结合偏磨因素提出了优化布置抽油杆扶正器、推广应用实心高强杆等治理措施,取得较好效果。  相似文献   

16.
用地面驱动螺杆泵采油时 ,井筒的弯曲或者抽油杆材质的不均匀性会导致抽油杆在井筒中的弯曲 ,从而改变抽油杆的受力状况。为了最大限度地减少因抽油杆受力的不确定性而对生产造成的危害 ,采用微元分析和分段迭代的方法 ,对抽油杆弯曲后的受力状况进行了研究。结果表明 ,除了正常作用在抽油杆上的扭矩和轴向力以外 ,抽油杆弯曲后还会受到由于弯曲变形引起的剪切应力、弯曲应力以及井筒与其接触的摩擦阻力和摩擦扭矩等。光杆扭矩和轴向力的计算方法应根据各种附加力的产生而发生改变。根据研究结果 ,建立了地面驱动螺杆泵抽油杆柱弯曲的力学模型 ,其计算结果与现场测试资料对比表明 ,该模型是比较准确的  相似文献   

17.
地面驱动螺杆泵抽油杆柱弯曲的力学模型   总被引:3,自引:1,他引:3  
用地面驱动螺杆泵采油时,井筒的弯曲或者抽油杆材质的不均匀性会导致抽油杆在井筒中的弯曲,从而改变抽油杆的受力状况。为了最大限度地减少甲抽油杆受力的不确定性而对生产造成的危害,采用微元分析和分段迭代的方法,对抽油杆弯曲后的受力状况进行了研究。结果表明,除了正常作用在抽油杆上的扭短和轴向力以外,抽油杆弯曲后还会受到由于弯曲变形引起的剪切应力、弯曲应力以及井筒与其接触的摩擦阻力和摩擦扭短等。光杆扭矩和轴向力的计算方法应根据各种附加力的产生而发生改变。根据研究结果,建立了地面驱动螺杆泵抽油杆柱弯曲的力学模型,其计算结果与现场测试资料对比表明,该模型是比较准确的。  相似文献   

18.
文中对螺杆泵采油技术应用中抽油杆柱失效问题进行了分析,并利用钻杆与螺杆泵运动的相似原理,研制开发出螺杆泵用锥螺纹抗扭矩抽油杆,很好地解决了抽油杆柱脱断问题,结果表明,增加连接螺纹防松能力,可起到提高上扣扭矩,增大预紧力的目的。  相似文献   

19.
单螺杆泵采油系统启动扭矩动力学模型研究   总被引:1,自引:0,他引:1  
单螺杆泵采油系统启动扭矩模型是螺杆泵井提高系统效率、进行故障诊断的理论基础。对启动过程中单螺杆泵的运动特点和受力情况进行分析,建立了该系统启动扭矩动力学模型。运用经典碰撞理论并考虑杆管非完全弹性碰撞的影响,利用该模型可计算出整个抽油杆柱的运动学和动力学参数。模型在二连油田B18-42井的应用结果表明,启动过程中的扭矩曲线在稳定时的井筒扭矩曲线左右摆动;延长启动时间可降低启动扭矩峰值,有效地解决螺杆泵井瞬时启动抽油杆扭矩过大造成的断杆问题。  相似文献   

20.
单螺杆泵采油系统启动扭矩动力学模型研究   总被引:3,自引:1,他引:3  
单螺杆泵采油系统启动扭矩模型是螺杆泵井提高系统效率、进行故障诊断的理论基础.对启动过程中单螺杆泵的运动特点和受力情况进行分析,建立了该系统启动扭矩动力学模型.运用经典碰撞理论并考虑杆管非完全弹性碰撞的影响,利用该模型可计算出整个抽油杆柱的运动学和动力学参数.模型在二连油田B18-42井的应用结果表明,启动过程中的扭矩曲线在稳定时的井筒扭矩曲线左右摆动;延长启动时间可降低启动扭矩峰值,有效地解决螺杆泵井瞬时启动抽油杆扭矩过大造成的断杆问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号