首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
深入分析了发电机发生转子绕组匝间短路故障后的电磁特性,得出当发电机发生匝间短路故障后,若端电压和有功功率保持不变时,无功功率会相对减小的结论;同时推出在一定的状态下,有功功率、无功功率和励磁电流之间的对应关系。利用人工神经网络具有不需要精确的数学模型及诸多参数的优点,把人工神经元网络方法引入到发电机转子绕组匝间短路的故障诊断技术中,可通过对故障样本的比较,诊断出转子绕组匝间短路的故障情况。  相似文献   

2.
张晓军  杨浩旋  蹇寅 《科技资讯》2013,(10):138-138
随着机组容量的增加和经常性的调峰,转子匝间短路故障已经成为大型发电机常见的故障之一。本文介绍了隐极式同步发电机转子绕组匝间短路的电压降诊断法,通过测量各个线圈的电压分布,及时发现转子绕组早期匝间短路,定位故障线圈,防止事故的发生,同时电压降法可以提高定位的精确度,大大减少检修工作量,节约检修成本。  相似文献   

3.
重复脉冲法检测发电机转子绕组匝间短路故障的研究   总被引:1,自引:0,他引:1  
该文介绍了发电机转子绕组匝间短路的危害,着重分析了重复脉冲法检测转子匝间短路故障的原理,并进行了故障模拟试验,验证了重复脉冲法的原理。  相似文献   

4.
高勇 《科技资讯》2013,(26):110-110,112
在汽轮发电机转子故障中,最常见的就是匝间短路缺陷,为了能够给相关故障的处理和分析提供参考,文章对诊断一台660MW发电机转子绕组匝间短路的方法进行探讨,并对排查故障的过程及方法进行确认.  相似文献   

5.
本文分析了发电机转子绕组发生短路后的电磁特性,介绍了发电机转子绕组匝间短路故障的诊断方法,提出了一种基于模糊神经网络的诊断方法,把模糊神经理论融合RSO方法对故障进行诊断和定位.  相似文献   

6.
电力变压器是电力系统的关键核心设备,变压器的运行状态直接影响供电的可靠性。针对实际实验中变压器匝间短路系列故障设置困难问题,采用有限元仿真软件建立与实际变压器一致的电磁场仿真模型,分析了变压器空载时电流电压特性,验证了模型的准确性;建立了变压器低压侧匝间短路故障仿真模型和电路模型,得到了匝间短路时绕组电流变化趋势和电磁关系变化方程。研究了短路匝数不同对变压器绕组电流和电磁参数的影响,从短路4匝到16匝,短路电流最大值从14.5 kA降到4.2 kA,磁场的最大值为正常值的20多倍;建立了变压器三维温度场模型,对比了变压器正常和不同匝间短路故障工况时的温度场分布,发生4匝短路故障时,匝间短路绕组部分温度达到500 ℃,并且随着短路匝数的增加短路绕组部分温度上升,而其他部分温度变化在100 ℃以内,结果表明匝间短路故障会严重影响短路绕组部分温度场分布,而对其它部分影响较小  相似文献   

7.
运用数值积分法,在建立发电机转子系统弯扭耦合振动模型基础上,考虑定子绕组匝间短路故障时发电机转子弯曲及扭转电磁刚度的影响,对不同程度匝间短路故障下转子的弯曲及扭转振动特性进行分析。结果表明,发电机定子匝间短路故障不仅会使转子弯曲和扭转振动加强,还会增加转子弯振和扭振中的倍频及高倍频成分;随短路程度加大,弯振的1、3、5等奇数次倍频振动量与扭振的2、4等偶数次倍频振动量逐渐增加,且弯振中1倍频振动量最大,扭振中2倍频振动量变化最为显著。  相似文献   

8.
通过分析相电流信号,对大功率电力机车异步牵引电机的两种典型故障——转子断条故障和定子绕组匝间短路故障进行故障诊断,建立电机故障情况下的有限元模型并进行仿真.结果表明,电机故障引起了三相电流不对称,基于故障后的三相电流,利用频谱分析法和对称分量法进行后处理运算,可以提取到明显的故障特征,能够有效的诊断转子断条故障和定子绕组匝间短路故障.实验所得结果与仿真及理论分析吻合,证明了故障模型的正确性,也验证了基于相电流信号的故障诊断方法的有效性.  相似文献   

9.
电机转子绕组匝间短路故障诊断研究   总被引:1,自引:0,他引:1       下载免费PDF全文
分析了探测线圈检测电机转子绕组匝间短路故障的机理,构建故障诊断系统.以WTMM为基础,对信号进行分析并计算波峰特征的Lipschitz指数.以MATLAB为后台对信号进行仿真,以Lipschitz指数α的方差为定标,得出发生匝间短路故障的位置和故障程度.实验表明,通过Lipschitz指数来判断故障发生及其故障程度是一...  相似文献   

10.
针对双馈异步风力发电机转子匝间短路的故障振动机理尚不明确且无法为故障诊断提供理论依据的问题,开展了双馈异步风力发电机转子匝间短路故障振动特性分析.首先,结合有限元仿真及解析推导,分析转子匝间短路下双馈异步风力发电机的气隙磁密规律,得到转子所受的不平衡磁拉力;然后,考虑转子不平衡磁拉力的情况下构建双馈异步风力发电机转子-轴承系统非线性动力学模型,利用非线性动力学仿真获取转子匝间短路故障下系统的振动仿真信号;最后,在双馈异步风力发电机故障模拟实验台上进行转子匝间短路故障实验,利用实验分析验证非线性动力学仿真结果的有效性.非线性动力学仿真及实验分析结果均表明,转子匝间短路故障下双馈异步风力发电机转子-轴承系统振动信号的频谱存在转频的谐波成分,通过检测转频的谐波分量可诊断双馈异步风力发电机转子匝间短路故障,有效揭示了双馈异步风力发电机转子匝间短路的故障振动机理.  相似文献   

11.
绕组匝间短路是电力变压器内部故障的主要形式。本文在对变压器匝间短路进行理论分析的基础上,运用MATLAB对变压器匝间短路状态进行仿真,阐述其故障特征。  相似文献   

12.
张恩龙 《科技资讯》2014,12(18):120-120
三相异步电动机定子绕组在运转过程中,会出现各种故障。如何在掌握三相异步电动机运行情况的基础上,对电动机故障进行处理,对保证电动机正常运转具有十分重要的意义。本文就绕组缺相运行、过载运行、绕组接地、绕组相间短路、相间匝间短路、绝缘电阻偏低等6种情况进行了分析,重点介绍了在检修时的故障检查分析及相应的处理手段。  相似文献   

13.
针对轴向磁通定子无铁心电机早期匝间短路故障问题,提出一种基于零序分量和定子电流分量相位差的轴向磁通定子无铁心电机的早期匝间短路故障诊断和定位方法。首先,根据定子绕组电感极小的特点建立了匝间短路故障数学模型;其次,对故障前后的短路电流、相电流、零序分量等进行了傅里叶分析,通过零序电压基波幅值变化对匝间短路故障进行识别;最后,通过对比零序电压基波与定子三相电流初相位差来进行故障相定位。结果表明,匝间短路故障相的相电流基波初始相位与零序电压基波初相位差的绝对值近似180°,而健康相的相位差与180°相差较大。基于相位差可以实现轴向磁通无铁心电机早期匝间短路故障的诊断与定位,为永磁电机的匝间短路故障诊断提供了参考。  相似文献   

14.
对运行中的变压器内部短路的故障及异常现象做总体分析,指出短路故障的几种分类,并对故障产生的原因加以说明,给出判断故障的方法,重点对变压器一侧一次绕组线圈匝间短路进行探讨和分析。  相似文献   

15.
白种桐 《甘肃科技》2009,25(8):76-78
采用电流信号调理技术,在不影响破碎机电动机运行的条件下,对电动机的电流信号进行频谱分析,可对典型的机械故障做出准确诊断,其中包括:转子损坏,机械不对中和不平衡,基础松动,静态和动态偏心,铁芯损坏,绕组松动,匝间短路和轴承故障。  相似文献   

16.
为了能更准确、容易地在线诊断出同步发电机转子绕组匝间短路故障,提出了一种基于支持向量回归机的励磁电流预测方法.利用同步发电机正常运行时不同工况下的机端电压、有功功率、无功功率和励磁电流来建立发电机励磁电流的支持向量回归机预测方法.利用该方法预测正常运行时所需励磁电流,并与在线实测的励磁电流进行比较,误差(相对误差)超过阈值就诊断为发生匝间短路故障.通过微型同步发电机动态模拟实验表明,该方法的精度优于BP神经网络法和遗传规划法.  相似文献   

17.
针对中小型变压器经常出现的绕组匝间短路故障不易判断的现象,通过两个典型实例对用电流比法判断变压器绕组匝间短路的具体操作过程进行了介绍,并指出了几点应注意的事项。  相似文献   

18.
励磁绕组匝间短路是同步发电机常见故障之一。为保证机组和电网的安全可靠运行,有必要对该故障进行在线分析检测。首先介绍了应用于同步发电机励磁绕组匝间短路故障在线分析的磁场-电流谐波分析法、探测线圈法、多回路法、输出电气量分析法、振动分析法等的研究现状,并对几种方法进行了比较,然后对未来在线分析方法的发展方向进行了展望,对输出电气量分析法提出了两条研究思路,最后说明了在线分析方法应具有实际可行性和多用途性。  相似文献   

19.
干式空心电抗器故障烧毁事故严重威胁电力系统的安全稳定运行.为了探寻干式空心电抗器在线运行事故原因,结合现场运行干式空心电抗器典型事故,从理论上分析了包封受潮和过电压两方面造成干式空心电抗器故障的机理;对深圳电网某故障干式空心电抗器进行了解体试验,对相绕组进行了直阻、电抗值和脉冲振荡波试验.解体试验结果显示,干式空心电抗器均存在三相绕组匝间短路现象,且脉冲振荡波试验对检测电抗器匝间短路缺陷具有较高的灵敏度.最后基于理论分析和试验数据提出了干式空心电抗器故障应对措施.  相似文献   

20.
倪明 《科技咨询导报》2010,(13):131-131,133
差动保护主要是保护变压器绕组内部和引出线上发生的多相短路故障,以及变压器单相匝间短路和接地短路故障。实际运行中,变压器差动保护在非故障情况下可能发生误动。本文通过对主变压器的差动保护原理进行阐述,分析了可能引起差动保护继电器误动作的原因,并提出了切实可行的防范措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号