首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Al and Y modified silicide coatings on the Nb-15Si-22Ti-(2,14)Cr-2Al-2Hf-2V alloys(where the alloy with 2 at%Cr or 14 at%Cr is hereafter referred to as 2Cr and 14 Cr alloy,respectively) was prepared by pack cementation.The microstructural evolution and the oxidation behaviours of the coating 2Cr and 14 Cr samples at 1250 ℃ were studied.The 2Cr alloy consists of Nb solid solution(Nb_(SS)) and α-Nb_5Si_3 silicide,while the Laves C15-Cr_2Nb phase arised in the 14 Cr alloy.The coating structure of the coating 2Cr sample contained the outer(Nb,X)Si_2+(Nb,X)_5Si_3 layer,the middle(Nb,X)_5Si_3 layer and the inner undeveloped intermetallic(Nb,Ti)_3(Al,X) layer,the structure of the coating 14 Cr sample consisted of the outer single(Nb,X)Si_2 layer,the middle(Nb,X)_5Si_3 layer,the transition(Nb,Ti)(Cr,Al) layer and the inner(Cr,Al)_2(Nb,Ti) layer.The coating 14 Cr sample exhibited better oxidation resistance than the coating 2Cr sample.With an outer single(Nb,X)Si_2 layer,a compact oxide scale consisting of SiO_2 and TiO_2 formed on the coating14 Cr sample,which can efficiently prevent the substrate from oxidising.For the coating 2Cr sample with an outer(Nb,X)Si_2 +(Nb,X)_5Si_3 layer,the oxide scale of the SiO_2,TiO_2,Nb_2O_5 and CrNbO_4 mixture generated,and the scale spalled out from the surface of the sample,resulting in disastrous failure.  相似文献   

2.
In order to protect Nb-Ti-Si based ultrahigh temperature alloy from oxidation, pack cementation processes were utilized to prepare Ce and Y jointly modified silicide coatings. The Ce and Y jointly modified silicide coating has a double-layer structure: a relatively thick (Nb, X)Si2 (X represents Ti, Cr and Hf elements) outer layer and a thin (Ti, Nb)5Si4 transitional layer. The pack cementation experiments at 1150 ℃ for 8 h proved that the addition of certain amounts of CeO2 and Y2O3 powders in the packs distinctly influenced the coating thickness, the contents of Si, Ce and Y in the (Nb, X)Si2 outer layers, and the density of cavities in the coatings. In order to study the effects of Ce and Y joint modification in the silicide coatings, both only Ce and only Y modified silicide coatings were also prepared for comparison. The mechanisms of the beneficial effects of Ce and Y are discussed. A pack mixture containing 1.5CeO2-0.75Y2O3 (wt%) powders was employed to investigate the growth kinetics of the Ce and Y jointly modified silicide coating at 1050, 1150 and 1250 ℃. It has been found that the growth kinetics obeyed parabolic laws and the parabolic rate constants were 109.20 mm2/h at 1050 ℃, 366.75 mm2/h at 1150 ℃ and 569.78 mm2/h at 1250 ℃, and the activation energy for the growth of the Ce and Y jointly modified silicide coating was 197.53 kJ/mol.  相似文献   

3.
The electroless plating Ni–P is prepared on the surface of Mg–7.5Li–2Zn–1Y alloys with different pickling processes.The microstructure and properties of Ni–P coating are investigated.The results show that the Ni–P coatings deposited using the different pickling processes have a different high phosphorus content amorphous Ni–P solid solution structure,and the Ni–P coatings exhibit higher hardness.There is higher phosphorus content of Ni–P amorphous coating using 125 g/L Cr O3and 110 ml/L HNO3(w68%)than using 180 g/L Cr O3and 1 g/L KF during pre-treatment,and the coating structure is more compact,and the Ni–P coatings exhibit more excellent adhesion with substrate(Fcup to22 N).The corrosion potential of Ni–P coating is improved and exhibits good corrosion resistance.As a result,Mg-7.5Li-2Zn-1Y alloy is remarkably protected by the Ni–P coating.  相似文献   

4.
Microarc oxidation(MAO)electrolysis plasma deposition was used to prepare Al_2O_3coatings on Ti-45Al-8.5 Nb alloys to improve high temperature oxidation resistance.The surface and cross-section morphologies before and after high-temperature oxidation,the chemical composition,and the phase identification of the coatings were investigated by scanning electron microscopy(SEM),electron probe microanalyses(EPMA),and X-ray diffraction(XRD).The results show that Al_2O_3coatings with a thickness of approximately 8μm can be obtained on the Ti-45Al-8.5 Nb alloys by MAO for 600 s.The samples with the Al_2O_3coatings exhibited better high-temperature oxidation resistance.A minimal weight gain of only 0.396 g/m~2after 100 h oxidation at 900°C was observed for the coatings formed with a deposition voltage of 400 V and using a duty cycle of 3%.The deposition mechanism of the Al_2O_3coatings and the effect of the MAO parameters are also described.  相似文献   

5.
In order to identify suitable halide activators and pack compositions for codepositing Cr and Si to form diffusion coatings on Nb-base in situ composites by the pack cementation process, thermochemical calculation was taken to analyze the vapor pressure of halide species generated at high temperatures. NH4Cl, NaF and CrCl3·6H2O were selected as the halide salts. The results of thermochemical calculations suggested that the pack powder mixtures, which contained Cr, Si, halide salts and Al2O3, may be activated by NH4Cl and NaF. According to the thermochemical calculations, the pack powder mixture of 12Cr-6Si-5NH4Cl-77Al2O3 (wt%) activated by NH4Cl was formulated and coating deposition experiments were carried out at 1200 and 1300℃. With adequate control of pack compositions and deposition conditions, it was found that codeposition of Cr and Si could indeed be achieved at these temperatures. The coating has a three-layer structure, of which was mainly composed of Cr2(Nb,X) (X represents Ti and Hf elements), Nb5Si3 and (Nb,Cr)3Si. Then the kinetics of coating growth process affected by temperature was studied. The experimental results of the oxidation showed that the coating can efficiently prevent substrate from oxidizing.  相似文献   

6.
Nickel-based superalloy DZ125 was first sprayed with a NiCrAlY bond coat and followed with a nanostructured 2 mol% Gd_2O_3-4.5 mol% Y_2 O_3-ZrO_2(2 GdYSZ) topcoat using air plasma spraying(APS). Hot corrosion behavior of the as-sprayed thermal barrier coatings(TBCs) were investigated in the presence of 50 wt%Na_2SO_4 + 50 wt% V_2O_5 as the corrosive molten salt at 900 ℃ for 100 h. The analysis results indicate that Gd doped YVO_4 and m-ZrO_2 crystals were formed as corrosion products due to the reaction of the corrosive salts with stabilizers(Y_2O_3, Gd_2O_3) of zirconia. Cross-section morphology shows that a thin layer called TGO was formed at the bond coat/topcoat interface. After hot corrosion test, the proportion of m-ZrO_2 phase in nanostructured 2GdYSZ coating is lower than that of nano-YSZ coating. The result reveals that nanostructured 2GdYSZ coating exhibits a better hot corrosion resistance than nano-YSZ coating.  相似文献   

7.
NiP-SiC (≈1 1wt% P) composite coatings were electroplated in a Brenner type plating bath. The coatings had amorphous nano-phase composite structure. Direct current and alternating current electrochemical tests were carried out on such coatings in a 3.5wt% solution of NaCl to evaluate their corrosion resistance. The potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) tests, and exposure experiments all show that the corrosion resistance of NiP-SiC coatings first increases and then decreases when the SiC content increases, but the corrosion resistance of NiP-SiC composite coating is better than that of amorphous NiP coatings.  相似文献   

8.
A high content silicon aluminum alloy(Al–25Si–4 Cu–1Mg) coating was prepared on a 2A12 aluminum alloy by supersonic plasma spraying. The morphology and microstructure of the coating were observed and analyzed. The hardness, elastic modulus, and bonding strength of the coating were measured. The wear resistance of the coating and 2A12 aluminum alloy was studied by friction and wear test. The results indicated that the coating was compact and the porosity was only 1.5%. The phase of the coating was mainly composed of α-Al and β-Si as well as some hard particles(Al_9Si,Al_(3.21)Si_(0.47), and CuAl_2). The average microhardness of the coating was HV 242, which was greater than that of 2 A12 aluminum alloy(HV 110). The wear resistance of the coating was superior to 2A12 aluminum alloy. The wear mechanism of the 2A12 aluminum alloy was primarily adhesive wear, while that of the coating was primarily abrasive wear. Therefore, it is possible to prepare a high content silicon aluminum alloy coating with good wear resistance on an aluminum alloy by supersonic plasma spraying.  相似文献   

9.
In this work,2at% Mo,2at% Nb and 2at% Hf were substituted for the same amount of W into a Co-9Al-9W-2Ta-0.02 B alloy(hereafter referred as to 2Mo, 2Nb and 2Hf alloys, respectively, while the original alloy is denoted as 0Me alloy). The effect of the Mo, Hf and Nb additions on the isothermal oxidation resistance, oxide scale evolution and failure mechanism, of the Co-9Al-9W-2Ta-0.02 B alloy when exposed at 800 °C and 900 °C for 100 h was investigated. It was found the Mo, Hf and Nb additions degraded the oxidation resistance of the Co-9Al-9W-2Ta-0.02 B alloy, while the 2Mo alloy always displayed the poorest oxidation resistance, resulted from heavy spallation of the oxide scale. An oxide scale composed of an outer Co_3O_(4+)CoO layer, a middle complex oxide layer enriched with Al, W and Ta, and a γ/needle-like Co_3W zone adhering to the γ/γ' substrate was gradually formed; moreover, a continuous or discontinuous Al_2O_3 layer and dispersive Al_2O_3 dots or slices were observed within the γ/needle-like Co_3W zone, depending on the oxidation temperature and added elements(Mo, Hf and Nb). The formation of volatile MoO_3 in the oxide scale of the 2Mo alloy enhance the exfoliation of the oxide products, resulting in severe spallation and poor oxidation resistance.  相似文献   

10.
In this work,Fe_3Si–Si_3N_4–Al_2O_3 composites were prepared at 1300°C in an N_2 atmosphere using fused corundum and tabular alumina particles,Al_2O_3 fine powder,and ferrosilicon nitride(Fe_3Si–Si_3N_4) as raw materials and thermosetting phenolic resin as a binder.The effect of ferrosilicon nitride with different concentrations(0wt%,5wt%,10wt%,15wt%,20wt%,and 25wt%) on the properties of Fe_3Si–Si_3N_4–Al_2O_3 composites was investigated.The results show that the apparent porosity varies between 10.3% and 17.3%,the bulk density varies from 2.94 g/cm~3 and 3.30 g/cm~3,and the cold crushing strength ranges from 67 MPa to 93 MPa.Under the experimental conditions,ferrosilicon nitride,whose content decreases substantially,is unstable;part of the ferrosilicon nitride is converted into Fe_2C,whereas the remainder is retained,eventually forming the ferrosilicon alloy.Thermodynamic assessment of the Si_5AlON_7 indicated that the ferrosilicon alloy accelerated the reactions between Si_3N_4 and α-Al_2O_3 fine powder and that Si in the ferrosilicon alloy was nitrided directly,forming β-Si Al ON simultaneously.In addition,fused corundum did not react directly with Si_3N_4 because of its low reactivity.  相似文献   

11.
We investigated the effect of Al_2O_3 content on the viscosity of CaO–SiO_2–Al_2O_3–8wt%MgO–1wt%Cr_2O_3 (mass ratio of CaO/SiO_2is 1.0,and Al_2O_3 content is 17wt%–29wt%) slags.The results show that the viscosity of the slag increases gradually with increases in the Al_2O_3content in the range of 17wt%to 29wt%due to the role of Al_2O_3 as a network former in the polymerization of the aluminosilicate structure of the slag.With increases in the Al_2O_3 content from 17wt%to 29wt%,the apparent activation energy of the slags also increases from 180.85 to 210.23 k J/mol,which is consistent with the variation in the critical temperature.The Fourier-transform infrared spectra indicate that the degree of polymerization of this slag is increased by the addition of Al_2O_3.The application of Iida’s model for predicting the slag viscosity in the presence of Cr_2O_3 indicates that the calculated viscosity values fit well with the measured values when both the temperature and Al_2O_3 content are at relatively low levels,i.e.,the temperature range of 1673 to 1803 K and the Al_2O_3 content range of 17wt%–29wt%in CaO–SiO_2–Al_2O_3–8wt%MgO–1wt%Cr_2O_3 slag.  相似文献   

12.
A special coating technique, electro-spark deposition (ESD), was developed to produce micro-crystalline ODS MGH754 alloy coatings on a commercial 1Cr18Ni9Ti stainless steel and a cast Ni20Cr alloy substrates. The coatings have a very fine grain structure and metallurgical bonding with the substrates. The isothermal oxidation tests at 1000 ℃ in air showed that the micro-crystalline ODS alloy coatings had a much reduced oxidation rate and improved scale spallation resistance compared with the uncoated alloys. The selective oxidation of Cr was greatly promoted to form protective and continuous Cr2O3 scales on the alloy surface. Micro-crystallization and oxide dispersions have synergistic effects on the improvement of oxidation resistance. The beneficial effects were discussed based on the experimental results.  相似文献   

13.
NiCrAlY coatings were deposited on Ni-based superalloy by high-velocity oxygen-fuel spraying (HVOF). Surface modification by means of grit-blasted, shot-peened and ground methods was used in order to study the effect of surface conditions on the isothermal oxidation behavior of HVOF-sprayed NiCrAlY coatings at 1050 ℃. The results showed that surface modification had an obvious effect on the isothermal oxidation behavior of the coatings. There was a large decrease in growth rate compared with the as-sprayed coating. The scale formed on the grit-blasted and shot-peened coatings was a mixture of Al2O3 and NiCr2O4, while the oxide formed on the ground coating was composed mainly of Al2O3. After surface modification, the content of NiCr2O4 spinels decreased compared with the as-sprayed coating.  相似文献   

14.
The rapid degradation of magnesium(Mg) based alloys has prevented their further use in orthopedic trauma fixation and vascular intervention,and therefore it is essential to investigate the corrosion mechanism for improving the corrosion resistance of these alloys. In this work, the effect of applied voltage on the surface morphology and the corrosion behavior of micro-arc oxidation(MAO) with different voltages were carried out to obtain biocompatible ceramic coatings on AZ31 Mg alloy. The effects of applied voltage on the surface morphology and the corrosion behavior of MAO samples in the simulated body fluid(SBF) were studied systematically. Scanning electron microscope(SEM) and X-ray diffractometer(XRD)were employed to characterize the morphologies and phase compositions of coating before and after corrosion. The results showed that corrosion resistance of the MAO coating obtained at 250 V was better than the others in SBF. The dense layer of MAO coating and the corrosion precipitation were the key factors for corrosion behavior. The corrosion of precipitation Mg(OH)2and the calcium phosphate(Ca–P) minerals on the surface of MAO coatings could enhance their corrosion resistance effectively. In addition, the mechanism of MAO coated Mg alloys was proposed.  相似文献   

15.
To investigate the interdiffusion behavior of Ge-modified silicide coatings on an Nb-Si-based alloy substrate, the coating was oxidized at 1250℃ for 5, 10, 20, 50, or 100 h. The interfacial diffusion between the (Nb,X)(Si,Ge)2 (X=Ti, Cr, Hf) coating and the Nb-Si based alloy was also examined. The transitional layer is composed of (Ti,Nb)5(Si,Ge)4 and a small amount of (Nb,X)5(Si,Ge)3. With increasing oxidation time, the thickness of the transitional layer increases because of the diffusion of Si from the outer layer to the substrate, which obeys a parabolic rate law. The parabolic growth rate constant of the transitional layer under oxidation conditions is 2.018 μm·h-1/2. Moreover, the interdiffusion coefficients of Si in the transitional layer were determined from the interdiffusion fluxes calculated directly from experimental concentration profiles.  相似文献   

16.
The aim of the present study was to fabricate Fe–TiC–Al2O3 composites on the surface of medium carbon steel. For this purpose, TiO2–3C and 3TiO2–4Al–3C–xFe (0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surface of a medium carbon steel plate. The mixtures and substrate were then melted using a gas tungsten arc cladding process. The results show that the martensite forms in the layer produced by the TiO2–3C mixture. However, ferrite–Fe3C–TiC phases are the main phases in the microstructure of the clad layer produced by the 3TiO2–4Al–3C mixture. The addition of Fe to the TiO2–4Al–3C reactants with the content from 0 to 20wt% increases the volume fraction of particles, and a composite containing approximately 9vol% TiC and Al2O3 particles forms. This composite substantially improves the substrate hardness. The mechanism by which Fe particles enhance the TiC + Al2O3 volume fraction in the composite is determined.  相似文献   

17.
(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corrosion resistance,which is clearly superior to that of some typical bulk HEA and common engineering alloys.In order to obtain appropriate laser cladding preparation process parameters,the effects of laser energy density on the microstructure,microhardness,and corrosion resistance of(CoCrFeNi)95Nb5 HEA coating were closely studied.Results showed that as the laser energy density increases,precipitation of the Laves phase in(CoCrFeNi)95Nb5 HEA coating gradually decreases,and diffusion of the Fe element in the substrate intensifies,affecting the integrity of the(CoCrFeNi)95Nb5 HEA.This decreases the microhardness of(CoCrFeNi)95Nb5 HEA coatings.Moreover,the relative content of Cr2O3,Cr(OH)3,and Nb2O5 in the surface passive film of the coating decreases with increasing energy density,causing corrosion resistance to decrease.This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology,which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings.  相似文献   

18.
In order to improve the anti-oxidation of C/C composites, a SiC–MoSi2multi-phase coating for SiC coated carbon/carbon composites(C/C)was prepared by low pressure chemical vapor deposition(LPCVD) using methyltrichlorosilane(MTS) as precursor, combined with slurry painting from MoSi2 powder. The phase composition and morphology were analyzed by scanning electron microscope(SEM) and X-ray diffraction(XRD) methods, and the deposition mechanism was discussed. The isothermal oxidation and thermal shock resistance were investigated in a furnace containing air environment at 1500 1C. The results show that the as-prepared SiC–MoSi2coating consists of MoSi2 particles as a dispersing phase and CVD–SiC as a continuous phase. The weight loss of the coated samples is 1.51% after oxidation at 1500 1C for 90 h, and 4.79% after 30 thermal cycles between 1500 1C and room temperature. The penetrable cracks and cavities in the coating served as the diffusion channel of oxygen, resulted in the oxidation of C/C composites, and led to the weight loss in oxidation.  相似文献   

19.
zirconia-based nanostructured coatings were deposited on AA2024 to improve the corrosion resistance properties. Three different nanostructured coatings, namely, zirconia-benzotriazole, zirconia-alumina-benzotriazole, and zirconia-yttria-benzotriazole, were applied on AA2024 via a sol-gel method using the dip-coating technique. Next, the coatings were annealed at 150℃ after each dipping period. The phases and morphologies of the coatings were investigated using grazing incidence X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). The corrosion properties were evaluated using electrochemical methods, including polarization and electrochemical impedance techniques in 3.5wt% NaCl solution. The obtained results confirm the formation of homogeneous and crack free zirconia-benzotriazole-based nanostructured coatings. The average roughness values for zirconia-benzotriazole, zirconia-alumina-benzotriazole, and zirconia-yttria-benzotriazole nanostructured coatings were 30, 8, and 6 nm, respectively. The presence of alumina as a stabilizer on zirconia coating was found to have a beneficial impact on the stability of the corrosion resistance for different immersion times. In fact, the addition of alumina resulted in the dominance of the healing behavior in competition with the corrosion process of zirconia-benzotriazole nanostructured coating.  相似文献   

20.
Mg–8Li–3Al+xCe alloys (x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg–8Li–3Al+xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B–117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg–8Li–3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号