首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Isothermal hot compression tests of as-cast high-Cr ultra-super-critical (USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250°C at strain rates ranging from 0.001 to 1 s-1. The softening mechanism was dynamic recovery (DRV) at 950°C and the strain rate of 1 s-1, whereas it was dynamic recrystallization (DRX) under the other conditions. A modified constitutive equation based on the Arrhenius model with strain compensation reasonably predicted the flow stress under various deformation conditions, and the activation energy was calculated to be 643.92 kJ·mol-1. The critical stresses of dynamic recrystallization under different conditions were determined from the work-hardening rate (θ)–flow stress (σ) and -?θ/?σ–σ curves. The optimum processing parameters via analysis of the processing map and the softening mechanism were determined to be a deformation temperature range from 1100 to 1200°C and a strain-rate range from 0.001 to 0.08 s-1, with a power dissipation efficiency η greater than 31%.  相似文献   

2.
Hot deformation behaviors of WE71 (Mg–7Y-1Nd-0.5Zr) alloy was investigated by plain strain compression tests conducted at temperatures ranging from 350 °C to 500 °C and strain rates varying from 0.01 s-1 to 10 s-1. Results show that the hot deformation of WE71 was accompanied by the precipitation of rich Zr phase with granular shape and block-shaped phase rich in element Y. When deformed at low temperature and high strain rate, the softening behavior of the alloy was synergically determined by shear bands propagation, adiabatic heating, twinning formation and dynamic recrystallization (DRX). For the conditions of high temperature and high strain rate, DRX was the major softening mechanism while the formation and annihilation of extension twinning resulted in a special flow curve characteristic at the strain of around 0.3. According to the microstructural observations, it can be concluded that the irregular flow curves of WE71 alloy during plain strain compression process are mainly ascribed to shear bands propagation, adiabatic heating, twinning formation and DRX.  相似文献   

3.
The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950–1100℃ and the strain rates of 0.01–1 s?1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation (Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950℃ and the strain rate of 0.01 s?1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950℃, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.  相似文献   

4.
含硼微合金钢静态及亚动态再结晶动力学模型研究   总被引:3,自引:1,他引:3  
采用双道次压缩实验方法,在Gleeble-1500热模拟机上对某含硼微合金钢进行高温热变形道次间奥氏体再结晶软化规律的研究,并在实验基础上建立了该钢的静态及亚动态再结晶动力学模型。  相似文献   

5.
The dynamic recrystallization (DRX) and phase transformation (PT) behavior of a wrought β-γ TiAl alloy during hot compression under various deformation temperatures were investigated. The typical work hardening and flow softening features indicated that DRX was the dominating softening mechanism. Both γ-DRX and β-DRX took place during the hot compression. γ-DRX was triggered at all compression temperatures, while the β-DRX was induced when the compression temperature was above 1000 °C. The hot deformation kinetics was calculated, which showed that DRX behavior existed in the whole hot compression process, and the DRX volume fraction increased with the increase of the compression temperature. Combined with the microstructure observation, it concluded that the β/B2+α2→γ PT occurred at 850 °C and 1000 °C, while the γ→β/B2 PT happened at 1050 °C during hot compression, which is important to optimize microstructure. Moreover, the hot compression mechanism changed from dislocation gliding to grain-boundary sliding was discussed.  相似文献   

6.
在考虑动态、亚动态再结晶及静态再结晶的基础上,建立了Nb-V微合金钢物理冶金模型,并在线应用于中厚板热轧过程奥氏体再结晶、晶粒尺寸和流变应力的预测与控制.结果表明,对30 mm板材,待温温度900~950℃,待温厚度为成品厚度的2~2.7倍时,待温后采用中间冷却,奥氏体平均晶粒尺寸可以细化到30μm左右,同时残余应变在0.08~0.4的范围内.在平均流变应力模型中引入了晶粒尺寸和残余应变的影响,提高了精轧阶段的预测精度.  相似文献   

7.
The static recrystallization behaviors in SCM435 steel were investigated by two-pass hot compression tests on MMS-200 thermosimulation machine. Effects of deformation temperature, strain rate,deformation degree and the initial austenite grain size on static softening were analyzed. The stress compensation method was used to calculate the static recrystallization. The kinetics model of the static recrystallization of SCM435 steel was established and the obtained activation energy for static recrystallization was 182. 8 kJ /mol. Results showed that within a certain time interval( 1-100 s),the static recrystallization fraction X of SCM435 steel increased as the deformation temperature,the deformation rate and the amount of deformation increased,and it decreased as the initial grain size increased and increased as the time interval increased.  相似文献   

8.
The hot deformation behavior of uniform fine-grained GH4720Li alloy was studied in the temperature range from 1040 to 1130℃ and the strain-rate range from 0.005 to 0.5 s?1 using hot compression testing. Processing maps were constructed on the basis of compression data and a dynamic materials model. Considerable flow softening associated with superplasticity was observed at strain rates of 0.01 s?1 or lower. According to the processing map and observations of the microstructure, the uniform fine-grained microstructure remains intact at 1100℃ or lower because of easily activated dynamic recrystallization (DRX), whereas obvious grain growth is observed at 1130℃. Metallurgical instabilities in the form of non-uniform microstructures under higher and lower Zener–Hollomon parameters are induced by local plastic flow and primary γ′ local faster dissolution, respectively. The optimum processing conditions at all of the investigated strains are proposed as 1090–1130℃ with 0.08–0.5 s?1 and 0.005–0.008 s?1 and 1040–1085℃ with 0.005–0.06 s?1.  相似文献   

9.
对冷变形后的Co36Fe36Cr18Ni8Ti2合金在700 ℃和800 ℃下再结晶退火,制备成具有高强度及良好耐蚀性的多主元合金。采用电子背散射衍射(electron back-scattered diffraction, EBSD)表征了合金的相分布、再结晶组织以及晶界分布等微观结构特征,采用静态拉伸试验测试了合金的力学性能。结果表明,700 ℃退火的合金断后伸长率较低,但其抗拉强度与屈服强度分别达到了1 038和956 MPa。采用电化学工作站与扫描电子显微镜(scanning electron microscope, SEM)表征了合金在模拟体液中的耐蚀性。结果表明,700 ℃退火的样品具有较好的耐蚀性,腐蚀后的样品表面较为均匀。结合力学性能可知,700 ℃退火的样品具有作为新型医用金属材料的潜力。  相似文献   

10.
In order to assess Al-Zn-Mg-Cu alloys as potential high temperature structural materials,the hardness,tensile properties and fracture behaviors of 7085 Al alloy were investigated at various temperatures from room temperature to 175℃.High-resolution transmission electron microscopy was used to investigate the evolutions of precipitates at different temperatures,particularly on the relationship between microstructural evolution and tensile strength.The results reveal that both the microstructure and mechanical properties of the alloy are quite sensitive to the environmental temperature.As the temperature increases,the hardness and strength decrease while the elongation and reduction of area increase.As tensile testing temperature rises,the strain hardening exponent(n) decreases due to the thermal softening effect.The fracture mode of the alloy transforms from mixture of intergranular and transgranular fracture to completely transgranular dimples when tensile testing temperature reaches 150℃.The precipitate sequence during high temperature tests is coincident with that of aging.With the increase of tensile testing temperature,the mean precipitate radius grows larger,and the distribution of grain boundary precipitates transforms from continuous to discontinuous.  相似文献   

11.
Here we present experimental results of compressional wave velocity (Vp) of muscovite-biotite gneiss from Higher Himalayan Crystallines (HHC) at the temperature up to 950℃ and the pressure of 0.1―400 MPa. At 400 MPa, when the temperature is lower than 600℃, Vp decreases linearly with increasing temperature at the rate of (Vp/T)p -4.43×10-4 km/s ℃. In the temperature range of 600―800℃, Vp drops significantly and the signal is degraded gradually due to the dehydration of muscovite and α-quartz softening. When the temperature rises from 800℃ to 875℃, Vp increases and the signals become clear again as a result of the temperature going through the β-quartz range. The experiments indicate that the duration has great influence on the experimental results when temperature is above the dehydration point of biotite. During the first 30 h at 950℃, the Vp decreases substantially from 5.9 to 5.4 km/s and the signal amplitude is attenuated by more than 80%. After the 30-h transition, the Vp and the amplitude of ultrasonic wave signals become steady. The decrease of Vp and attenuation of the signals at 950℃ are associated with the breakdown reactions of biotite. The experiments suggest that the breakdown of muscovite and/or quartz softening can contribute to the low seismic wave velocity in thickened quartz-rich felsic-crust such as what is beneath southern Tibet. Additionally, α-β quartz transition generates a measurable high seismic velocity zone, which provides a possibility of precisely constraining the temperature in the upper-middle continental crust. Our study also demonstrates that duration is a key factor to obtain credible experimental results.  相似文献   

12.
Auger electron spectroscopy (AES) was used to investigate the grain boundary segregation of arsenic and nitrogen in a kind of microalloyed steel produced by a compact strip production (CSP) technology at 950 to 1100℃, which are similar to the hot working temperature of the steel on a CSP production line. It was discovered that arsenic segregated on grain boundaries when the steel was annealed at 950℃ for 2 h. When the annealing temperature increased to 1100℃, arsenic was also found to have segregated on grain boundaries in the early annealing stage, for instance, within the first 5 min annealing time. However, if the holding time of the steel at this temperature increased to 2 h, arsenic diffused away from grain boundaries into the matrix again. Nitrogen was not found to have segregated on grain boundaries when the steel was annealed at a relatively low temperature, such as 950℃. But when the annealing temperature increased to 1100℃, nitrogen was detected to have segregated at grain boundaries in the steel.  相似文献   

13.
利用双道次压缩的方法,在Gleeble 1500热模拟实验机上研究了低碳钢SS400在变形间隔时间内奥氏体的软化行为,以便为制定合理的细化晶粒轧制工艺提供实验和理论基础.采用后插法计算了在不同真应变条件下的静态再结晶率,通过双道次压缩测试静态软化动力学的实验表明,实验钢变形后很容易发生静态软化.在真应变为0.4、0.2时,静态再结晶激活能分别是Qmc=189.3、170.2kJ/mol。  相似文献   

14.
对变形量为30%的冷轧Pb-Ca-Sn-Al合金进行热力实验,对静态再结晶动力学模型Avrami方程系数进行回归,得出Pb-Ca-Sn-Al合金静态再结晶模型,研究保温时间、退火温度和加载力对其静态再结晶软化率的影响。结果表明,影响Pb-Ca-Sn-Al合金再结晶软化率的因素主次顺序为:保温时间,退火温度,加载力;相同加载力和保温时间条件下,退火温度越高,Pb-Ca-Sn-Al合金再结晶软化率越高;Pb-Ca-Sn-Al合金再结晶软化率增长速率随保温时间延长而快速增大,当保温时间增至60s时,再结晶软化率的增长速率渐趋缓慢。  相似文献   

15.
This paper deals with a peculiar rheological behavior of aluminum at near-solidus temperatures. It has been experimentally established that there is an inverse strain rate dependence of strain resistance at temperatures ranging between 560 and 640°С and strain rates ranging from 0.06 to 1.2 s-1. Electron backscatter diffraction analysis has shown that at temperatures ranging between 540 and 640°С and strain rates ranging from 0.06 to 0.1 s-1, the main process of softening is dynamic polygonization, resulting in in situ recrystallization. At higher strain rates, ranging between 0.8 and 1.2 s-1, and temperatures ranging between 560 and 640°С, the recovery is dynamic. This unusual behavior of the mechanism of softening and the presence of the inverse strain rate dependence of strain resistance can be explained by blocking the motion of free dislocations by foreign atoms, which occurs at strain rates ranging between 0.06 and 0.1 s-1. This process results in dislocation pile-up, thereby causing in situ recrystallization. At strain rates exceeding 0.16 s-1, there is no intensive blocking of dislocations, leading to a direct strain rate dependence of strain resistance.  相似文献   

16.
对经过二级变形时效处理后的Cu-Ni-Si合金进行不同变形量的冷变形后,再进行退火处理,研究了变形量对合金抗软化性、再结晶组织和再结晶动力学行为的影响。研究结果表明:再结晶晶粒在晶界处形成,大的变形量能够提高再结晶的形核速率。经40%变形的合金的软化温度为470℃,再结晶温度在550℃左右;在400℃退火时,合金发生再结晶的激活能为162 kJ/mol。再结晶的激活能随变形量的增加而降低,当变形量由40%增至80%时,再结晶激活能由162 kJ/mol降至140 kJ/mol。  相似文献   

17.
研究了Nb-Ti微合金钢高温变形时的软化行为和微合金钢动态和静态析出物的电镜分析.通过双道次恒应变速率压缩实验,从流变应力曲线用卸载法求出了不同热变形条件下的软化分数,并建立了静态再结晶、亚动态再结晶动力学模型,计算出静态再结晶、亚动态再结晶的表观激活能.同时,还对静态和动态析出行为进行了探讨,讨论了析出对软化行为的影响,并通过透射电子显微镜对析出物的形貌、大小、分布进行了观察,用衍射图谱进一步确定了析出物的成份.  相似文献   

18.
Dynamic compression tests under strain rates from 870 s?1 to 2100 s?1 were conducted for a near α Ti–8Al–1Mo–1V titanium alloy with equiaxed microstructure. Compression behavior, adiabatic shearing and band microstructure were investigated via characterization and calculation. The results demonstrate that all dynamic constitutive curves exhibited obvious stress fluctuation phenomenon with double increase-decrease changing stages at the primary stage of compression. The dislocation multiplication theory can be used to explain this phenomenon. After the stress fluctuation period, work hardening coexisted with the thermal softening, resulting in the slow hardening tendency in constitutive curves. J-C model was utilized to quantify the dynamic constitutive curves. The deviations between the predicted and experimental curves under high strain rates may be attributed to the over-consideration of thermal softening effect in J-C model. Adiabatic shearing band (ASB) began to form under the strain rate of 2100 s?1. A total shearing strain of 8.1 within ASB achieved in 8.9 μs, corresponding to a local strain rate of about 9.1 × 105 s?1 and is over 430 times of the macro strain rate. Post annealing was conducted on ASB before EBSD characterization. Due to the static recrystallization during annealing, the α phase within ASB generally presented as ultra-fine grains less than 1 μm in diameter.  相似文献   

19.
The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenite in microstructure was studied in an iso-stress condition. Hot compression tests were performed at temperatures of 800–1100℃ and strain rates of 0.001–1 s?1. The flow stress was modeled by a hyperbolic sine constitutive equation, the corresponding constants and apparent activation energies were determined for the studied alloys. The constitutive equation and law of mixture were used to measure the contribution factor of each phase at any given strain. It is found that the contribution factor of ferrite exponentially declines as the Zener-Hollomon parameter (Z) increases. On the contrary, the austenite contribution polynomially increases with the increase of Z. At low Z values below 2.6.×1015 (lnZ=35.5), a negative contribution factor is determined for austenite that is attributed to dynamic recrystallization. At high Z values, the contribution factor of austenite is about two orders of magnitude greater than that of ferrite, and therefore, austenite can accommodate more strain. Microstructural characterization via electron back-scattered diffraction (EBSD) confirms the mechanical results and shows that austenite recrystallization is possible only at high temperature and low strain rate.  相似文献   

20.
通过高温拉伸和高温压缩试验研究了两种Cr21节约型双相不锈钢在950~1150℃温度范围内的高温塑性,结果表明两种材料的高温塑性差异很大.通过温度、应变速率、相比例和显微组织4个方面的分析发现,适当增加稳定铁素体相元素和升高变形温度有利于提高Cr21节约型双相不锈钢的高温塑性.在较低温度较高应变速率热变形时,裂纹容易在被拉长的奥氏体和铁素体相界处形核并沿着相界在铁素体内进行扩展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号