首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 25 毫秒
1.
以某3 MW风电齿轮箱为研究对象,通过导入壳体、齿圈、转架有限元凝聚刚度矩阵,建立基于MASTA的多柔体动力学模型,分析发现箱体在三级齿轮啮合频率附近有最高的动能分布,齿轮箱在高速级齿轮第一阶啮合频率激励下有最大的振动响应,且计算结果和试验测试结果基本符合。该结果可对风电齿轮箱设计阶段进行振动风险规避提供一定计算参考。  相似文献   

2.
修枝机齿轮箱振动特性仿真分析   总被引:1,自引:1,他引:0  
针对修枝机齿轮箱在运行过程中出现的振动和异响问题,基于多体动力学理论,利用动力学 Adams软件建立齿轮箱动力学模型,结合傅里叶变换理论计算齿轮箱齿轮啮合动态力。建立齿轮箱有限元模型,完成齿轮箱约束模态分析。根据数据处理后的轴承处频域激励载荷,利用有限元软件Ansys Workbench计算齿轮箱体表面振动的动态响应。仿真结果和试验结果表明,齿轮箱的振动噪声在齿轮箱固有频率与齿轮啮合激励频率接近时达到最大值,为今后齿轮箱体辐射噪声分析以及结构优化设计提供了依据。  相似文献   

3.
为了探究齿轮裂纹损伤对行星轮系编码器信号的影响机理,以利用编码器信号对行星齿轮箱进行健康监测,通过动力学分析研究了在齿轮裂纹损伤影响下行星轮系编码器信号的响应特性,并建立了响应的模型。首先采用能量法推导了齿轮存在裂纹时的时变啮合刚度算法,并构建了扭转动力学模型,用于获取编码器信号;在此基础上,通过将行星轮裂纹时的啮合刚度代入构建的模型中,求解得到行星轮裂纹影响下的编码器响应信号,分析编码器信号中蕴含的扭转振动特征;最后根据模型进一步研究了不同裂纹损伤下的行星轮系编码器响应信号。在实验台上进行了验证,结果表明:当行星轮出现裂纹故障时,编码器响应信号中蕴含的扭转振动出现明显冲击特征;随着裂纹损伤程度增加,编码器响应信号中扭转振动的冲击特征逐渐增强,其均方根值与峭度值明显增加,可有效评估故障损伤程度。该研究结果可为编码器信号用于行星齿轮箱健康监测提供理论依据。  相似文献   

4.
针对修枝机齿轮箱在运行过程中出现的振动和异响问题,基于多体动力学理论,利用Adams软件建立齿轮箱的动力学模型,结合快速傅里叶变换理论计算得到齿轮箱齿轮的啮合动态力。利用ANSYS Workbench软件建立齿轮箱有限元模型,完成齿轮箱的约束模态分析。根据数据处理后的轴承处频域激励载荷,计算齿轮箱体表面振动的动态响应。仿真结果表明,齿轮箱的振动噪声在齿轮箱固有频率与齿轮啮合激励频率接近时达到最大值,为以后的齿轮箱体辐射噪声分析以及结构优化设计提供了理论依据。  相似文献   

5.
目的针对多级齿轮传动系统中行星轮故障信号微弱、难以识别的问题,利用传递特性分析挖掘故障信号的传递关系,提出行星轮故障信号的识别方法。方法以多级齿轮传动系统故障仿真试验台为研究对象,建立其三维刚柔耦合模型并进行ADAMS动态仿真,得到正常及行星轮断齿状态下各级齿轮副的接触力信号,利用试验台测试正常及故障状态下箱体的加速度信号。以接触力信号为输入,试验测试信号为输出,利用系统辨识方法计算得到系统正常及故障状态下的传递函数幅频响应曲线。结果与结论分析各传递路径的成分、幅值及贡献量发现,信号的耦合特性使得定轴齿轮箱中高速级啮合频率周围出现行星轮故障频率,提出利用故障的连带关系识别行星轮故障信号的方法。  相似文献   

6.
船用齿轮箱多体动力学仿真及声振耦合分析   总被引:1,自引:0,他引:1  
基于多体系统动力学理论,综合考虑齿轮副时变啮合刚度、齿侧间隙、轴承支撑刚度等内部激励以及螺旋桨外部激励,建立了含传动系统及结构系统的船用齿轮装置多刚体系统动力学模型,计算了齿轮副动态啮合力及轴承支反力;对齿轮箱及支座进行柔性化处理,形成多柔体系统动力学模型,采用模态叠加法计算了箱体表面的动态响应.而后以多体动力学分析所得的轴承支反力频域历程为边界条件,建立了箱体声振强耦合分析模型,预估了齿轮箱表面声压及外声场辐射噪声.结果表明,齿轮副动态啮合力、轴承支反力以及箱体动态响应频域曲线的峰值均出现在齿轮副的啮合频率及其倍频处;仿真所得的箱体振动加速度及外声场辐射噪声与齿轮箱振动噪声试验台架实测结果吻合良好.  相似文献   

7.
采用动模型试验测试隧道表面和动车组车体表面测点的时程压力,验证雷诺平均方程应用于计算列车通过隧道空气动力学的有效性,结果表明数据误差满足精度要求.基于验证后的仿真算法,建立高速动车组在最不利长度隧道内交会的三维几何模型,计算高速动车组转向架的气动力,进而分析其变化规律.计算结果及分析表明:尾车转向架6的阻力最大,其阻力的最大值和幅值与速度的二次方成正比关系;头车转向架1和尾车转向架6的侧向力最大,其侧向力极值和幅值与速度的二次方成正比关系;头车转向架2的升力极值最大;当动车组低速交会时,各转向架的垂向力幅值差别不大,但当动车组运行速度超过250 km/h,转向架位置越靠前其垂向力幅值越大.  相似文献   

8.
针对某电动汽车高速轮边减速器振动大、噪声强度高等关键问题,建立该减速器齿轮传动系统动态啮合分析模型,对额定功率、最高转速与最大转矩3种工况的各级齿轮副的啮合特性与动态响应进行计算,分析系统振动结构噪声幅值及其分布规律,研究关键重合度设计参数对系统动态啮合性能的影响,基于MASTA提出传动系统宏观几何参数优化方案。研究结果表明:各工况下输出级齿轮副的传动误差峰峰值偏大,高速输入轴轴承处的结构噪声最大;与轴向重合度为非整数设计工况相比,当齿轮副的轴向重合度接近整数时,齿轮副接触线长度变化率较小,啮合过程中接触载荷波动较小,啮合刚度变化率明显降低,齿轮箱各轴承处结构噪声得到明显降低;宏观几何参数优化方案使得各齿轮副动态性能得到一定的提升。  相似文献   

9.
行星齿轮箱中齿根早期裂纹损伤的故障特征微弱,导致其难以被识别.为揭示齿根早期裂纹的故障机理,采用集中参数法建立计入裂纹损伤效应的行星齿轮箱传动-结构耦合非线性动力学模型.首先,基于势能法建立含齿根裂纹损伤的齿轮副啮合刚度与传动误差计算模型,通过刚度激励函数与位移激励函数将裂纹损伤的效应纳入行星传动系统的非线性动力学模型,进而求解行星传动系统的振动响应,结果表明内、外传动支路之间的传动误差差异导致各支路载荷分配不均.其次,采用ANSYSWorkbench建立箱体结构的有限元模型.将行星传动系统中太阳轮、行星架以及内齿圈的支承反力施加于箱体结构的相应轴承座处,并通过窗函数计入行星架旋转对信号的调制效应以获取行星齿轮箱的振动信号;通过对箱体振动信号的频谱分析,提取了行星齿轮箱齿根早期裂纹损伤的故障特征.最后,搭建动力传动故障模拟实验台,对存在齿根早期裂纹损伤的行星齿轮箱进行了振动测试.仿真信号与实测信号基本一致,表明所建行星齿轮箱传动-结构耦合动力学模型能准确揭示行星齿轮箱齿根早期裂纹损伤的故障机理.行星齿轮箱中齿根早期裂纹损伤的故障特征表现为以啮合频率为中心、故障特征频率的分数倍频及行星架转频为间隔的调制边带.  相似文献   

10.
为了研究时变啮合刚度对船用斜齿轮传动系统动力学特性的影响,以某船用高速斜齿轮副为研究对象,首先建立了考虑时变啮合刚度的斜齿轮弯-扭-轴耦合动力学模型,并采用改进的基于承载接触分析(Loaded Tooth Contact Analysis,LTCA)的时变啮合刚度计算方法,计算并拟合出时变啮合刚度曲线;然后分析了特定时变啮合刚度激励条件下转速升高对系统振动情况的影响,以及9 000 r/min和12 000 r/min时不同时变啮合刚度激励下的系统振动特性。分析结果表明,时变啮合刚度激励下,在非共振区转速变化对系统振动特性的影响不显著。齿轮副平均啮合刚度值增大会使振动幅值减小,但共振转速会发生改变,即系统固有频率会发生改变,另外时变啮合刚度波动幅值增大会使振动加剧但不改变系统固有频率。本文研究可为高速斜齿轮传动的设计和工程应用提供一定的参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号