首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
修枝机齿轮箱振动特性仿真分析   总被引:1,自引:1,他引:0  
针对修枝机齿轮箱在运行过程中出现的振动和异响问题,基于多体动力学理论,利用动力学 Adams软件建立齿轮箱动力学模型,结合傅里叶变换理论计算齿轮箱齿轮啮合动态力。建立齿轮箱有限元模型,完成齿轮箱约束模态分析。根据数据处理后的轴承处频域激励载荷,利用有限元软件Ansys Workbench计算齿轮箱体表面振动的动态响应。仿真结果和试验结果表明,齿轮箱的振动噪声在齿轮箱固有频率与齿轮啮合激励频率接近时达到最大值,为今后齿轮箱体辐射噪声分析以及结构优化设计提供了依据。  相似文献   

2.
针对修枝机齿轮箱在运行过程中出现的振动和异响问题,基于多体动力学理论,利用Adams软件建立齿轮箱的动力学模型,结合快速傅里叶变换理论计算得到齿轮箱齿轮的啮合动态力。利用ANSYS Workbench软件建立齿轮箱有限元模型,完成齿轮箱的约束模态分析。根据数据处理后的轴承处频域激励载荷,计算齿轮箱体表面振动的动态响应。仿真结果表明,齿轮箱的振动噪声在齿轮箱固有频率与齿轮啮合激励频率接近时达到最大值,为以后的齿轮箱体辐射噪声分析以及结构优化设计提供了理论依据。  相似文献   

3.
基于多体系统动力学理论,综合考虑齿轮副时变啮合刚度、齿侧间隙、轴承刚度及阻尼、转速连续变化的影响,建立了变速器传动系统动力学模型,计算得到齿轮动态啮合力和壳体各轴承座处的动态支反力.然后对变速器壳体柔性化处理,获得变速器壳体固有频率及振型.最后以各轴承座处的动态支反力为激励,采用模态叠加法计算壳体结构的动态响应,获得了壳体表面的振动信息.仿真结果表明:在扭矩一定时,变速器壳体表面振动加速度幅值随转速升高呈增大趋势,与实验台架实测结果吻合良好,并且误差在10%以内.  相似文献   

4.
建立了齿轮传动系统集中质量模型,采用子结构法通过箱体有限元模型提取其集中质量参数,采用间接物理参数识别法通过基础加速度导纳提取其模态参数并转换为集中质量参数,并根据界面协调条件建立了齿轮-箱体-基础耦合系统的动力学模型.以单级斜齿轮传动装置为例,计算了耦合系统在齿轮时变啮合刚度激励下的齿轮动态传递误差、轴承支反力及箱体振动.耦合箱体与基础前后的系统动力学分析对比表明:箱体及基础柔性对齿轮动态传递误差的影响较小,而对轴承支反力波动及箱体振动的影响较大;耦合模型能更准确地反映系统的动态特性.  相似文献   

5.
风电增速箱结合部刚度分析及振动噪声预估   总被引:3,自引:3,他引:0       下载免费PDF全文
为了研究风电增速箱的振动特性和辐射噪声,基于轴承支承刚度及齿轮副啮合刚度分析,建立了风电增速箱轴系扭转振动模型,运用Matlab求解振动微分方程,得出轴系扭振频率及对应振型;综合考虑刚度激励、误差激励及冲击激励,建立了风电增速箱动力学有限元模型,仿真得出增速箱的动态响应。以箱体表面节点振动位移为边界条件,建立了增速箱声学边界元模型,采用直接边界元法求解得到箱体表面声压及场点的辐射噪声。结果表明,风电增速箱扭振频率与激励频率及其倍频相差较大,不会出现共振现象;增速箱结构噪声和辐射噪声的峰值主要出现在高速级齿轮啮合频率的二倍频附近。  相似文献   

6.
针对齿轮箱在实际运行过程中存在的轴系变形问题,提出了一种二级齿轮减速器在多源时变激励作用下振动噪声的计算方法。综合考虑齿轮、轴承时变刚度以及误差激励的影响,并引入二级齿轮相位关系,采用有限元法建立了计入轴柔性的二级直齿轮-轴-轴承系统耦合动力学模型。通过Newmark时域积分法求解系统动力学方程,得到各轴承动载荷,并分析了传动系统的固有特性及轴的静变形特征。采用有限元法对齿轮箱进行模态分析,提取箱体各阶固有频率与振型。以轴承频域动载荷为齿轮箱激励,利用模态叠加法计算得到齿轮箱的振动响应,并采用声学边界元法对齿轮箱的辐射噪声进行了计算。分析了轴柔性和转速对轴承动载荷与箱体辐射噪声的影响。仿真结果表明:计入轴柔性后,轴承动载荷波动幅值降低,激励频率成分也随之减少;在低频段200~900Hz与高频段1 800Hz附近,箱体的主要共振模式发生改变,顶部场点噪声有所降低;随着转速的升高,激起了传动系统轴系弯曲振动模式,并引起传动系统振动幅值增大,且齿轮箱顶部场点噪声明显大于两侧场点噪声。研究结果可为减速器的减振降噪设计提供理论参考。  相似文献   

7.
以单级人字齿轮减速器为研究对象,综合考虑齿轮传动过程中的误差激励、啮合刚度激励建立动力学模型。通过傅里叶级数法求解,得到了轴承动载荷时域历程与频谱。以轴承动载荷为激励,采用FEM/BEM方法计算了减速器辐射噪声,得到齿轮箱声场各场点的噪声谱。通过对箱体结构进行适当改进,计算了不同箱体结构下的辐射噪声。研究并讨论了箱体结构对辐射噪声的影响,得到了肋板对箱体辐射噪声的影响规律,为减速器的减振降噪设计提供了理论依据。  相似文献   

8.
采用弹簧单元模拟轮齿啮合刚度,杆单元模拟箱体间的联结螺栓,弹簧阻尼单元模拟滑动轴承和滚动轴承,建立由齿轮、传动轴、轴承和箱体等组成的GWC6066船用齿轮箱动态有限元分析模型及声学边界元模型;分析了齿轮箱在内部动态激励下的动态响应,预估了齿轮箱的振动烈度、结构噪声及空气噪声,并对齿轮箱进行实验模态分析及振动噪声测试,与仿真结果对比分析,二者吻合良好。  相似文献   

9.
风电增速齿轮箱动力学性能优化方法   总被引:2,自引:2,他引:0  
建立增速齿轮箱动力学分析有限元模型,利用Lanczos法求得齿轮系统的振动模态;以齿轮副时变啮合刚度激励、齿面综合误差激励和轮齿啮合冲击激励为内部作用激励,采用直接积分法求得箱体表面节点的动态响应。选取箱体上12个主要结构参数作为动力学性能优化的设计变量,齿轮箱体积为状态变量,以齿轮箱表面振动加速度的均方根值最小为动力学性能优化的目标函数,利用零阶与一阶优化算法求得最优设计变量。结果表明:优化前后箱体均不产生共振,且满足静力学条件;优化后目标函数减小37.5%,箱体各计算点的振动响应均有较大幅度的减小,最大减小量为54%。  相似文献   

10.
齿轮箱动态响应及辐射噪声数值仿真   总被引:3,自引:1,他引:2       下载免费PDF全文
建立了齿轮箱传动系统及结构系统的动力有限元分析模型,综合考虑轮齿刚度激励、误差激励和啮合冲击激励等内部动态激励的影响,应用ANSYS软件对齿轮箱的固有模态和内部激励下的动态响应进行有限元数值仿真。以动态响应结果作为边界激励条件,建立了齿轮箱箱体的声学边界元分析模型,利用SYSNOISE软件中的直接边界元法求解箱体表面声压及场点辐射噪声,并对齿轮箱进行空气噪声测试。比较辐射噪声的测试结果与数值仿真结果,两者吻合良好。  相似文献   

11.
针对一级行星两级平行轴风电齿轮传动系统,综合考虑齿轮时变啮合刚度、啮合阻尼、传递误差等因素,建立31个自由度的弯扭轴耦合集中参数动力学模型,采用变步长Runge-Kutta法对系统动力学微分方程进行求解,得出齿轮传动系统各级传动误差;借助软件建立风电齿轮箱刚柔耦合动力学模型,并导入传动误差,采用模态叠加法求得齿轮箱轴承支反力,并将其作为声振耦合模型的边界条件,采用声学有限元法对风电齿轮箱进行振动噪声预估,并与试验结果对比分析,两者吻合良好。  相似文献   

12.
增速箱系统动态激励下的响应分析   总被引:3,自引:0,他引:3  
齿轮啮合动态激励是齿轮系统产生振动和噪声的基本原因,齿轮系统在内部动态激励下的响应分析,对齿轮系统的设计和使用具有重要的意义。针对增速箱系统,采用三维接触有限元法得出啮合齿对的时变刚度曲线,根据齿轮精度级确定的齿轮偏差模拟得出齿面误差曲线,得出了刚度激励和误差激励。应用Ⅰ-DEAS软件建立了增速箱有限元动力分析模型,分析计算出了增速箱的固有频率和箱体、传动轴的动态响应。结果表明,增速箱系统在使用中不会引起共振,且振幅不大,能满足系统的使用要求。  相似文献   

13.
基于某款电动汽车两挡自动变速器,以齿面载荷分布和齿轮传递误差为优化目标,对比分析齿轮微观修形对电动汽车两挡自动变速器振动噪声的影响.建立电机转子-变速器刚柔耦合动力学模型,以变速器轴承处的振动加速度为激励,计算变速器在额定工况下的近声场辐射噪声云图和辐射声功率.结果表明,齿轮修形后变速器辐射噪声得到较好抑制,对指导变速器的优化和降低变速器的振动具有参考意义.  相似文献   

14.
齿轮副是传动系统中的重要部件,齿轮在啮合过程中会出现单、双齿交替参与啮合的情况,造成齿轮啮合刚度周期变化,引起系统振动.齿轮的啮合刚度与齿轮的状态有关,当齿轮出现故障时,齿轮啮合刚度会发生变化,因此通过监测齿轮的啮合刚度就能够估计齿轮副的工作状态.根据齿轮副的动力学模型建立齿轮啮合刚度的离散辨识模型,提出基于扩展卡尔曼滤波器和希尔伯特-黄变换瞬时频率,利用振动信号对齿轮啮合刚度进行估计的动态辨识算法.仿真和实测结果表明,所提出的方法能够跟踪辨识齿轮的啮合刚度,具有较高的辨识精度.  相似文献   

15.
风电齿轮箱传动系统的动力学建模   总被引:1,自引:0,他引:1  
由于风速的随机性特点,使得风电齿轮箱长期处于较为复杂的变载荷作用下而产生振动,这些振动将会引起齿轮箱内部结构的损坏.为了更好地对齿轮箱进行动力学分析,将风电齿轮箱传动系统分解为三级齿轮传动,采用集中质量法,在直齿轮、斜齿轮和行星齿轮动力学模型的基础上,建立了整个齿轮箱传动系统的动力学模型;并在考虑齿轮啮合刚度、啮合阻尼、啮合误差、偏心量、弯扭耦合、自身重力以及支撑轴承等因素的共同作用下,利用拉格朗日方程推导了整个传动系统的动力学方程.为今后分析兆瓦级风电齿轮箱传动系统的固有特性、动态响应等动力学特性奠定了一定的基础.  相似文献   

16.
考虑齿顶修缘的斜齿轮传动振动响应分析   总被引:1,自引:0,他引:1  
渐开线斜齿轮进行适当修形后,可以有效地改善其啮合性能,降低噪音和延长齿轮的使用寿命。利用建立未修缘以及含不同齿廓修缘量的斜齿轮有限元模型,通过轮齿承载接触分析得到不同修缘量斜齿轮的静态传递误差和啮合刚度;在考虑齿顶修缘影响的基础上,建立了具有12个自由度的平行轴系斜齿轮转子系统动力学模型,将得到的时变啮合刚度应用于系统动力学模型中,研究不同修缘量对斜齿轮传动振动响应的影响规律。研究结果表明:在一定范围内,随着修缘量的增加,斜齿轮系统的径向振动和啮合力幅值明显降低,但当修缘量达到21μm后其幅值有增大趋势。研究结果对确定斜齿轮的最优修形量和分析修形斜齿轮的振动特性具有重要意义。  相似文献   

17.
针对一款新型纯电动汽车变速箱振动噪声大的问题,考虑齿轮传动误差的影响,建立了两挡变速箱仿真模型,对传动系统进行动力学分析.采用分块Lanczos法求解变速箱的模态频率与模态阵型.利用耦合声学边界元的方法,以动力学分析的结果作为激励,求解变速箱的辐射声场,并对变速箱的齿轮进行优化设计,仿真与实验证明优化后的变速箱振动噪声得到了明显的改善.  相似文献   

18.
为研究修形前后多级行星齿轮箱在复杂激励作用下的振动噪声,以海洋平台升降齿轮箱为对象,建立了耦合4级行星轮系、轴承和箱体的齿轮箱有限元模型,分析了齿轮箱的振动模态;采用静动力接触有限元法求解了修形前后齿轮副的内部动态激励,在此基础上提出了考虑轮齿修形的齿轮箱振动噪声预估方法,利用模态叠加法分别计算了轮齿修形前后齿轮箱的振动响应,并采用声学边界元法对齿轮箱的辐射噪声进行预估。结果表明:修形后4级行星齿轮箱的振动噪声明显降低,对比振动噪声仿真与实测结果,两者吻合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号