首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
在既有地铁隧道邻近位置或上方进行基坑开挖,容易导致地铁隧道变形,从而对其使用功能和安全性产生严重影响.结合具体工程实例,从基坑设计、坑底地基加固、施工控制和信息化施工监测4个方面采取措施控制地铁隧道的变形,保护隧道基坑及地铁隧道的安全.监测结果表明,监测数据均在监测控制限值内,对既有地铁隧道起到有效保护.设计、施工措施及监测数据可供类似工程参考.  相似文献   

2.
针对基坑工程会对邻近既有地铁结构产生一定的附加变形、内力等,从而可能影响地铁正常运营甚至危及运营安全,采用理论计算、数值模拟及实测分析等手段,从基坑围护结构体系、基坑平立面尺寸、地基加固型式、土方开挖方式及基坑与既有地铁隧道的相互位置关系等不同的角度,分析了基坑工程对邻近既有地铁结构的影响问题.在总结现有研究成果的基础上,进一步展望了未来发展方向,即研究土方卸载、基坑围护体及地铁结构刚度三者的耦合作用,选择恰当的计算与分析模型和参数等,并深入探讨基坑工程对邻近地铁结构的影响机理和因素,改进监测工作方法,提高监测仪器精度,同时应扩大监测范围及增加监测内容等.  相似文献   

3.
基坑施工对下方运营地铁隧道影响的研究   总被引:1,自引:0,他引:1  
广州某明挖隧道基坑工程位于正在运营的地铁区间隧道正上方,坑底距隧道顶的最小距离仅为2.76 m.基坑开挖对该地铁区间隧道的影响成为该工程的一个关键问题.为此建立了该基坑工程的三维空间模型,考虑了设计中采用的施工保护等措施,对实际施工工况进行了模拟,动态地分析了施工过程中开挖卸荷对下方既有地铁隧道的影响.计算结果表明该基坑施工采用的地铁保护措施能确保地铁线路结构的安全和地铁的正常运营,为设计和施工提供了有益的参考.  相似文献   

4.
开挖卸荷引起地铁隧道位移预测方法   总被引:16,自引:0,他引:16  
目前越来越多的基坑工程位于已建地铁隧道之上或两侧 .近距离基坑开挖土体卸荷势必引起隧道的位移变化 ,因此如何预测和控制隧道变形、确保隧道使用安全日趋重要 .为此研究了处于软土基坑之下的地铁隧道的位移变化规律 ,分析了基坑工程中时间、空间效应对隆起的影响规律 ,提出了时间、开挖宽度影响系数 ,推导出考虑基坑施工影响的隧道位移变形的实用计算方法  相似文献   

5.
当地铁隧道距离基坑较近时,基坑施工会对地铁隧道的围岩应力进行重分布,并引发隧道结构产生变形及内力变化,甚至影响隧道的正常运行.文章应用三维数值分析的手段,对基坑施工过程进行三维动态模拟分析,并结合现场实际监测数据,分析基坑开挖对邻近矿山法地铁隧道的影响.分析表明,基坑施工会使邻近矿山法地铁隧道结构产生变形,但变形量非常微小,不会影响到地铁隧道的结构安全性.其现场实测数据与有限元分析结果对比反映了隧道变形的规律,可以为以后的工程提供参考.  相似文献   

6.
解决黄土地区基坑开挖对近接地铁隧道运营安全带来的影响,研究基坑工程与地铁隧道之间的相互作用机理,基于正交试验分析了水平净距,竖直净距等影响因素敏感性程度,并进一步结合西安地铁八号线幸福林带基坑工程,采用室内模型试验分析了基坑开挖对既有隧道影响的受力变形规律,结果表明:基坑与隧道的竖直净距和水平净距对隧道水平和竖直位移影响显著;在施工过程中,隧道管片的拉伸值始终大于压缩值,且拉伸方向和水平内径变化规律相反;管片拱顶和右墙处弯矩逐渐增大,而拱底和左墙则呈现先减小后增大的趋势;管片周围土压力主要集中在拱底和右墙处,且一直保持减小趋势,其纵向土压力差不断减小,水平土压力差不断增大,导致隧道朝上和朝基坑方向移动。  相似文献   

7.
赵启嘉 《甘肃科技》2010,26(7):113-114,70
随着城市发展和地下空间开发,越来越多基坑工程横跨在地铁隧道上方。而基坑开挖将改变周围土体的应力状态,使下卧隧道产生相应变形和内力,影响隧道的正常使用和地铁的安全。以深圳某横跨隧道上方的基坑工程为背景,通过三维有限元分析,对加固土体、设置抗拔桩、开挖分块等措施对基坑回弹和隧道隆起的影响,进行分析研究,为优化设计和施工提供有益的参考。  相似文献   

8.
基坑开挖引起地面不均匀沉降并导致周围地下构筑物倾斜、开裂等问题,一直以来受到人们关注。文中结合具体工程实例采用有限元法模拟基坑开挖过程的工况,分析基坑开挖对周围地铁隧道和地铁车站的影响,通过对比基坑开挖前后地铁车站和地铁隧道的位移和弯矩变化来判断基坑开挖和支护方式的合理性,提出相应的预防和保护措施,具有很重要的工程实际意义。  相似文献   

9.
基坑开挖引起下部地铁隧道变形控制研究   总被引:1,自引:0,他引:1  
以南京上跨地铁隧道的基坑工程为背景,文章运用MIDAS GTS软件建立三维数值分析模型,对基坑施工进行全过程动态模拟,计算结果与工程监测数据基本吻合;通过理论分析和数值模拟计算得出了基坑开挖过程中影响运营隧道变形的关键因素,计算结果表明,基坑开挖不可避免地引起坑底土体发生变位,带动土体中的隧道产生位移;探讨了减少基坑开挖对紧邻地铁隧道影响的控制措施。  相似文献   

10.
结合某公寓基坑工程,针对地铁盾构隧道下穿该基坑的复杂环境条件,首先采用简化大井法计算帷幕失效(工况一)下基坑降水坑外地层的水力坡降曲线,采用二维有限元渗流法计算帷幕有效(工况二)下基坑降水坑外地层的水力坡降曲线;接着采用分层总和法计算基坑降水引起地铁盾构隧道的附加沉降,分析基坑降水对下卧地铁的影响.结果表明:(1)考虑截水帷幕失效与有效两工况下,基坑降水引起下卧地铁盾构隧道右线中轴线处水位降深分别为4.2 m、1.5 m;(2)考虑截水帷幕失效与有效两工况下,基坑降水引起下卧地铁盾构隧道右线、中轴线底部最大沉降分别为-2.83 mm、-1.3 mm,均满足轨道交通安全运营的要求.  相似文献   

11.
以深圳某深基坑工程为案例,利用Midas-GTS有限元软件建立三维数值模型,基于流固耦合理论分析基坑开挖和降水对紧邻既有地铁隧道产生的影响,以期为实际的基坑设计和施工提供有效的数据参考。结果表明:基坑降水造成的地下水渗流具有空间差异性,基坑长边侧渗流速度大于短边一侧,且地铁隧道处水力梯度较大;最大总位移出现在地铁隧道中部,且近基坑侧隧道产生的总位移比远离基坑侧隧道多一倍,其中最大水平位移发生在隧道侧边,最大沉降位移发生在隧道顶部;测斜位移曲线具有明显的拐点,临近地铁隧道的基坑长边一侧在35~40 m深度处可能形成潜在滑动面。  相似文献   

12.
为探究基坑开挖和顶管施工共同作用下下卧隧道结构的响应规律,以西安兴善寺东街雨水管道工程为背景,采用数值模拟和实测数据分析相结合的方法对比分析采用明挖法和顶管法两种不同施工方式施工时下卧隧道变形规律,利用正交试验法研究基坑开挖和顶管施工共同作用时下卧隧道隆起量影响因素。结果表明:下卧隧道沿纵向5倍基坑开挖宽度内结构的隆起变形受基坑开挖影响较大,且基坑开挖卸荷使下卧隧道结构发生不均匀变形。左隧道拱顶最大隆起量为4.13 mm,拱腰最大收敛值约为0.55 mm,结构易发生扭转变形;右隧道拱顶最大隆起量约为3.19 mm,拱腰最大收敛值约为0.24 mm,结构易发生竖向拉伸变形。采用顶管法施工可以减少下卧隧道的变形量,实测数据表明顶管施工会使下卧隧道产生横向收敛,最大为1.7 mm,实际工程中应注意控制既有隧道结构的横向变形。基坑开挖和顶管施工共同作用时,各因素对左右隧道的影响程度不同,左隧道的隆起量主要受基坑开挖卸荷作用影响,右隧道的隆起量主要受顶管施工的顶推作用和开挖卸荷作用影响。同时应注意各因素之间不一定是相互独立的,需要考虑因素组合对下卧隧道隆起量的影响。  相似文献   

13.
基坑开挖卸荷将改变地应力平衡状态,位于基坑正下方的地铁隧道将随基底一定深度范围内土层回弹而发生上浮变形。本文结合深圳地铁11号线正上方某采用竖井工法开挖的基坑工程为例,通过建立三维有限元模型分析下卧地铁隧道随竖井开挖过程的变形规律及竖井工法保护机制。结果表明:基坑开挖对下卧地铁隧道竖向卸荷作用显著,采用竖井工法能有效减缓隧道上浮趋势,减小最终上浮量;隧道纵向变形呈双峰形态,纵向变形曲率半径未超过规定值;隧道横截面随开挖过程而发生两侧拱腰压缩、拱顶与拱底之间拉伸的变形趋势,附加弯矩随开挖卸载率增大而逐渐减小,最大附加弯矩位于拱顶附近;竖井工法能减小基底土层的扰动程度,有效抑制基底土体以及隧道围土塑性区发展深度和面积,从而有效控制下卧地铁隧道的隆起量。  相似文献   

14.
研究一套适用于地铁深基坑施工风险评价的指标体系和方法,用以分析评判项目施工风险等级,指导和改进现场施工风险管理.首先,依据事故树分析(FTA)、“4M1E”系统安全理论和文献分析等,构建包含29个指标的地铁深基坑施工风险评价指标体系;然后,结合风险耦合理论分析风险因素间的交互作用,建立基于C-OWA算子和相互作用矩阵法的施工风险评价模型.结合某地铁深基坑施工项目案例,应用该评价指标体系和方法计算施工风险等级为中等风险,此结果与项目实际施工情况相符,从而验证了本文方法的可行性.  相似文献   

15.
填海区由于软土较厚,在填海区开挖基坑风险较大,若开挖基坑同时临近地铁隧道则还必须严格控制基坑开挖对临近地铁隧道产生的变形影响,因此在填海区位于地铁安保区内开挖基坑对变形控制要求极高。本文详细介绍了深圳填海地区、地铁安保区内某超大直径圆环撑软土深基坑变形控制技术,通过理论计算和三维有限元计算进行了详细分析,并与第三方实际监测结果作了对比分析,对类似工程具有参考及指导意义。得出的结论:(1)支护结构的最大变形随着基坑开挖深度的增加而逐步增大,基坑开挖至坑底后,整体变形最大位置位于基坑两侧长边中部采用圆环支撑部位。基坑开挖至坑底时,第一道支撑最大水平位移发生在大约基坑中部冠梁位置,第二道支撑最大水平位移发生在大约基坑西北侧冠梁位置。(2)咬合桩+刚度较大的超大直径环形钢筋砼撑结构应用于较差地质条件下的软土深基坑工程中时在变形控制及减小基坑工程对周边变形影响等方面均非常有效。(3)基坑开挖过程中,三种方式所反映出的支护结构水平位移的变化趋势基本相同,随着基坑向下不断开挖,支护结构的最大水平位移量逐渐增加,但变化幅度有一定的差异。  相似文献   

16.
沈阳某超深基坑支护系统监测分析   总被引:1,自引:1,他引:0  
通过现场监测的方法,对沈阳某超深基坑的支护设计进行了研究.结果表明:该超深基坑采用桩锚支护方案,总体可行,但支护结构变形过大,安全储备不足,类似工程应采取相应措施来提高支护设计的安全性;附近地铁隧道开挖,对基坑稳定影响很小,支护设计可不予考虑;地基土冻胀对该基坑稳定性的影响不可忽略,是沈阳越冬基坑工程所要考虑的一个因素.研究结果为沈阳地区的超深基坑工程设计和施工提供了重要参考.  相似文献   

17.
匝道桩基穿越既有地铁工程结构附近土层,近距离施工不可避免地对地铁结构产生不利影响。为了解匝道基础工程施工阶段地铁结构及周边地层变化动态,给同类其他工程提供设计和施工依据。对大石—汉溪区间隧道进行了稳定性变形监测。主要阐述该隧道地面沉降、隧道周围土层水平位移和隧道结构及附近土层变形测试方法,变形随时间变化的量测数据及分析。结果表明:桩基钻挖成孔和灌注混凝土时,地面沉降和土层水平位移均不稳定,而隧道结构变形相对稳定;各变形值没有超过报警值,说明该工程采用的施工及监测方法是可行的,对其他同类工程具有借鉴意义。  相似文献   

18.
为研究桥梁桩基施工引起地层蠕变行为对邻近地铁隧道安全运营的影响,依托实体工程,采用卸荷条件下黏土蠕变特性试验确定了隧道周围土体的蠕变模型,通过数值模拟手段(FLAC3D软件)与现场监测相结合的方法,分析了桩基开挖期间地铁隧道的竖向位移、水平位移和应力分布状态。结果表明:广义Kelvin本构模型能够较为准确的描述黏土体开挖卸荷时的蠕变效应;桩基开挖后,邻近地铁隧道衬砌位移不断增大,随后进入稳定状态;随着桩基开挖数量的增加,地铁隧道竖向位移和水平位移总体表现为下沉和向外收敛趋势;桩-隧最小净距越小,桩基施工对隧道影响越大,采用隧道双侧布桩的施工方式,能够有效降低桩基开挖时隧道拱腰的累计水平位移,有利于地铁隧道的安全稳定运营。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号