首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is the significant period of tropospheric biennial Oscillation(TBO)over East Asian monsoon region at the interannual timescales,which has the important influences on East China climate.Based on a set of reconstructed indices which describes the western Pacific subtropical high(WPSH)objectively,this paper focuses on the TBO component of WPSH,one of the key members of the East Asian Monsoon system,and its relationships with the tropical SST and atmospheric circulation anomalies.It is found that(1)As an important interannual component of WPSH,the time series of TBO has the obvious transition in the late1970s,and the variability of the WPSH’s TBO component is more significant after the late 1970s.(2)The time-lag correlations between the WPSH’s TBO and the tropical sea surface temperature(SST)anomalies in several key ocean regions are more significant and have longer correlation duration than the raw data.The response of the western boundary index to ENSO is earlier than the intensity index,and the time-lag correlations of them are up to maximum when lagging ENSO by 3–5 months and 5–6months,respectively.(3)In the course of the WPSH’s TBO cycle,the occurrence of the El Ni o-like anomaly in the tropical central-eastern Pacific in winter is always coupled with the weak East Asian winter monsoon,with the most significant enhancing phase of the WPSH’TBO.In contrast,the La Ni a-like anomaly in the central-eastern Pacific in winter is coupled with the strong East Asian winter monsoon,with the most weakening phase of the WPSH’s TBO.(4)The distribution of the tropical SST and atmospheric circulations anomalies are asymmetric in the TBO cycle.The WPSH’s TBO is more significant in the period of the developing El Ni o-like anomaly in central-eastern Pacific than in the period of the developing La Ni a-like anomaly.Therefore,during the period of developing El Ni o-like anomaly,more attention should be paid to the interannual component of TBO signal in the short-term climate prediction.  相似文献   

2.
The measurements of brightness temperature (BT) from the upper-troposphere water vapor channel 12 of the National Oceanic and Atmospheric Administration polar satellites from 1979 through 1995 are used to analyze the interannual variations of the global monsoon strength. Results show that in the interannual time-sclae the BT variability in the equatorial eastern Pacific (EEP) is out of phase with the BT variabilities in other four regions, i. e. South Asia, tropical south American, two subtropical areas in the South and North Pacific. The BT interannual variation mode may be called monsoonal oscillation (MO). The MO is the result of the atmospheric circulation anomaly in the troposphere.  相似文献   

3.
利用1961—2014年全国756站的降水资料和美国NOAA-CIRES的20CR月平均再分析资料,研究了四川南部秋季(9~11月)降水变化及其相应的大气环流异常特征。结果表明,四川南部秋季降水具有显著的年际和年代际变化特征,其年际周期以2~4 a和准6 a为主,年代际周期以9~15 a为主。它与黄淮流域同期降水存在显著的负相关关系,与四川南部秋季降水关系密切的大气环流结构是北大西洋—俄罗斯西部—蒙古西部—东亚(NRMA)遥相关波列,NRMA遥相关波列在东亚地区激发出一个气旋性环流,与此同时,中南半岛西侧存在一个反气旋性环流,以上环流型有利于北方冷空气和来自孟加拉湾的暖湿气流在四川南部地区汇合,从而容易导致该地区降水的产生,反之亦然。  相似文献   

4.
Empirical orthogonal function (EOF) analysis is carried out for the year-to-year variability of the boreal winter (DJF) mass stream function of the mean meridional circulation (MMC) during the period 1948—2005. The results demonstrate that it is dominated by the equatorially asymmetric and symmetric modes. Further analysis shows that the former mode is linked with the boreal winter Hadley cell mainly on the decadal time-scale, and the latter on the interannual time-scale. The asymmetric mode index (AMI) with a clear upward trend contributes to the decadal strengthening of the boreal Hadley circulation, and is closely correlated with the tropical SST warming, especially in the region of Indo-west Pacific warm pool (INWP). Furthermore, the AMI also contributes to the abrupt change of the correlation coefficient between the boreal Hadley circulation and ENSO after 1976. The symmetric mode index (SMI) with robust and stable linkage with ENSO shows a significant interannual variability, suggesting that the variability of the Hadley circulation is mainly associated with ENSO on the interannual time-scale.  相似文献   

5.
This study examines the tropical cyclone (TC) landfall activities over the East Asia in three types of decaying phase of warm sea surface temperature anomalies (SSTAs) over the equatorial central-eastern Pacific: eastern Pacific warming decaying to La Nifia, eastern Pacific warming decaying to a neutral E1 Nifio-Southern Oscilla- tion phase, and a central Pacific warming decaying year. Results show that, for the type of eastern Pacific wanning decaying to La Nifia, more TCs make landfall over Hainan Island and Beibu Gulf, whereas fewer TCs reach eastern China coast. In particular, the number of landfalling TCs remarkably decreases in the decaying phase of eastern Pacific E1 Nifio to a neutral year. During the decaying phase of central Pacific E1 Nifio events, more TCs tend to make landfall over southern China, Indochina Peninsula and the Philippines. The anomalies of atmospheric circu- lation and environmental conditions induced by the SSTAs over the tropical Pacific in the different decaying types are responsible for the evident variation in features of TC landfall.  相似文献   

6.
Preliminary results of a regional air-sea coupled model over East Asia   总被引:1,自引:0,他引:1  
Li  Tao  Zhou  GuangQing 《科学通报(英文版)》2010,55(21):2295-2305
We have established a regional air-sea coupled model over East Asia and conducted a 20-year integration to evaluate its performance in reproducing the present climate. The coupled model consists of RegCM3 and HYCOM controlled by the OASIS3 coupler with resuolution of 60 km for the atmosphere and 33 km for the ocean, respectively. Unlike some other regional air-sea coupled models, a one-way nesting method is employed in the oceanic component and a heat flux adjustment for solar radiation is used to remove an about 2°C cold bias in SST. The primary analysis for this 20-year integration shows that the coupled model successfully reproduces the main features of the circulations over East Asia, both in the atmosphere and the ocean, including climatology, seasonal and interannual variations. Improvements are seen in the coupled model compared to the uncoupled one, especially in the simulation of precipitation, the most important element of the East Asian monsoon, although there are still obvious discrepancies that come mainly from the model components themselves. Further analyses show that the rainfall simulation benefits from the enhancements of the Northwest Pacific Subtropical High in summer, which leads to the improvement of the moisture flux simulation at the middle-lower atmospheric circulation. The results indicate that the regional air-sea coupled model is more suitable for the East Asia monsoon simulation.  相似文献   

7.
An assimilation data set based on the GFDL MOM3 model and the NODC XBT data set is used to examine the circulation in the western tropical Pacific and its seasonal variations. The assimilated and observed velocities and transports of the mean circulation agree well. Transports of the North Equatorial Current (NEC), Mindanao Current (MC), North Equatorial Countercurrent (NECC) west of 140°E and Kuroshio origin estimated with the assimilation data display the seasonal cycles, roughly strong in boreal spring and weak in autumn, with a little phase difference.The NECC transport also has a semi-annual fluctuation resuiting from the phase lag between seasonal cycles of two tropical gyres' recirculations. Strong in summer during the southeast monsoon period, the seasonal cycle of the Indonesian throughfiow (ITF) is somewhat different from those of its upstreams, the MC and New Guinea Coastal Current (NGCC), implying the monsoon's impact on it.  相似文献   

8.
The relationship between sea surface temperature (SST) east of Australia and tropical cyclone frequency over the western North Pacific (WNPTCF) is analyzed by use of observation data.The WNPTCF from June to October is correlated negatively to spring SST east of Australia.When the spring SST is in the positive phase,a cyclonic circulation anomaly in the upper troposphere and an anticyclonic circulation anomaly in the lower troposphere prevail over the western North Pacific from June to October,concurrent with an anomalous atmospheric subsidence and an enlarged vertical zonal wind shear.These conditions are unfavorable for tropical cyclone genesis,and thus WNPTCF decreases.The negative phase of the spring SST east of Australia leads to more tropical cyclones over the western North Pacific.The spring SST east of Australia may give rise to simultaneous change in tropical atmospheric circulation via the teleconnection wave train,and then subsequently affect atmospheric circulation variation over the western North Pacific.  相似文献   

9.
 分析了101 a北半球低层和高层大气环流(包含四大涛动及W,C,E 3种环流型、副高强度)的演变特征,并讨论了大气环流因子的年际和年代际变化与中国降水的关系.结果表明,无论是高层还是低层大气环流特征随时间尺度的不同而不同,最显著的变化是7 a以下的年际变化.低层因子的年际变化比对流层因子明显;对流层因子的气候基本态的变化比低层因子明显.SO是低层因子中发生年际变化的强信号,NPO是低层因子中时间尺度28 a以上变化的强信号.副高是对流层中发生年际变化的强信号,E型环流是对流层中时间尺度28 a以上变化的强信号;中国近百年的降水量变化有显著的小于3.5 a,3.5~7 a,7~14 a的周期变化;中国降水和高、低层大气环流因子之间存在明显的同时相关和滞后相关关系.同时相关中,影响中国降水的主要因子为:W,NPO,SO;滞后相关中,影响中国降水的主要因子为:W,NAO,AO,E.  相似文献   

10.
运用相关分析和滑动相关方法,分析了江淮流域5个代表站1903-2000年梅雨期雨量的变化特征及其与太平洋海温的相关关系及年代际差异.结果表明,江淮地区梅雨期雨量在近百年来存在明显的年际和年代际变化特征.通过分析梅雨期雨量与太平洋海温的年代际相关特征发现,江淮流域梅雨期雨量与前期及同期太平洋海温关系密切,前一年冬季及梅雨期东北太平洋海温与江淮流域梅雨期雨量负相关,在热带东太平洋的Nino1 2区两者正相关显著,同年春季西太平洋部分海域海温与江淮流域梅雨期雨量正相关.从年际相关分析发现,前一年冬季太平洋海温与梅雨期雨量正相关,同年春季以及梅雨期两者相关不明显.通过分析年代际差异发现,江淮流域梅雨期雨量与前期及同期热带太平洋关键区海温的21a滑动相关存在显著的年代际差异,这种差异与海温的21a滑动平均的年代际冷暖背景关系密切,热带太平洋海温关键区前一年冬季冷海温背景下,梅雨期雨量同海温正相关显著,同年春季暖海温背景下,两者之间负相关显著,而江淮流域梅雨期雨量同中国近海海温之间(从冬季到梅雨期)维持显著的正相关,与该区海温冷暖背景的关系则并不明显.  相似文献   

11.
The convection over the tropical western Pacific warm pool influences significantly the atmospheric circulation and climate in East Asia. Thus, the precursory signals of the convection may be used in the forecast of summer climate in China. According to the present results, the June-July-August (JJA) mean convection intensity over the warm pool is significantly related to the precursory positive and negative sea surface temperatures (SSTs) in the warm pool and in the equatorial central and eastern Pacific, respectively. It is also related to the simultaneous negative surface temperatures west to the Philippines. The analysis on the SSTs associated with the convection over the warm pool in individual month of summer shows that for the convection in June and July, there are precursory SST signals in the warm pool and the equatorial central and eastern Pacific. Therefore, this study shows that only the convection in June and July, rather than that in August, has precursory SST signals, despite the existence of the precursory signals of the JJA mean convection. Accordingly, it is implied that the interaction among the warm pool, equatorial central and eastern Pacific, and the region west to the Philippines may exhibit distinct features in the precursory period (preceding winter and spring) and in the simultaneous period.  相似文献   

12.
This paper presents the surface cooling trend observed in spring along East Asia coast after the late 1990s, in contrast to the global warming trend. This surface cooling trend is comprehensible as it agrees well with the cooling of sea surface temperature (SST) in the northwestern Pacific and the weakening of 300 hPa East Asian jet (EAJ) during spring. Moreover, this cooling phenomenon has been shown to be related to the rapid decline of Arctic sea ice cover (SIC) in previous autumns. The Arctic SIC signals in previous autumns can continue in spring and act as enhanced moisture sources that support the increased snow cover in Siberia during spring. The increased Siberian snow cover possibly favors the southward invasion of cold air masses via strong radiative cooling and large-scale descending motion, which may contribute indirectly to the reduction of temperature in East Asia. In addition, three climate models that can reproduce well the East Asian spring surface cooling observed in the past predicted uncertainty in the spring temperature projection in the next decade.  相似文献   

13.
We investigate the variations of subsurface ocean temperature(SOT) based on the monthly-Simple Ocean Data Assimilation(SODA) during 1958-2007,and discuss the linkage between the variations of SOT and the eastern and central Pacific ENSO(EP and CP-ENSO) events.The wavelet analyses suggest that the variation of the EP and CP-ENSO events shows the 2-7 and the 10-15 years oscillation in the tropical sea surface temperature(SST),and coupled with a zonal dipole mode and a tripole mode in the SOT anomalous field reveled by the singular value decomposition(SVD) analysis.During the mature phase of CP-ENSO,the positive center of SOT at the subsurface layer locates in the west of dateline,which results in the increase of SOT in the Ni o4 region and causes the CP-ENSO event.Statistical analysis implies that,the eastern and central Pacific subsurface indices which are defined by the expansion coefficients of the first and third SVD mode for SOT have shown the capabilities in disguising the EP and CP-ENSO events,respectively.In addition,corresponding to the increase of the SOT amplitude on the 10-15 years time scale,we found that the frequency and intensity of CP-El Ni o events has exhibited an upward trend after the 1980s,which suggests that the CP-ENSO event has shown an enhanced impact on the global climate in the past decades.  相似文献   

14.
亚澳季风区大气视热源的季节演变特征   总被引:1,自引:0,他引:1  
对1950-2000年平均的亚澳季风区大气热源的季节演变和突变特征进行分析.结果发现,亚澳季风区热带低纬的大气热源区随季节由冬到夏而自南半球向北半球移动,在盛夏达到最北,强度也最强,并在春末与北半球中纬度的热源区汇合,到秋季开始南撤;东亚季风区和印度季风区大气热源的冬夏型间转换的过度季节都较短,冬夏型间转换具有明显的突变性,而印度季风区大气热源的冬季型维持时间明显比夏季型要长;亚澳季风区内大气热源的年较差以亚洲季风区的热源年较差最显著,澳大利亚北部次之.  相似文献   

15.
The Asian summer monsoon(ASM) begins firstly over the Indo-China Peninsula in early May and over the South China Sea(SCS) in mid-May.The different monsoon onset dates can exert distinct effects on the summer rainfall in Asia.Statistical results indicate that the Antarctic Oscillation(AAO) in the boreal winter has a significant precursory influence on the ASM onset dates.In stronger AAO years,both the Mascarene high and the Australia high in March are stronger owing to the "see-saw" structure of atmospheric circulation over the subtropics and higher latitudes in the Southern Hemisphere,and the tropical intertropical convergence zone(ITCZ) is deeper.Thus,the pressure gradient between the subtropical and tropical regions increases in spring.As a result,the Somalia cross-equatorial flow(SCEF) occurs earlier,strengthens,and enhances the westerlies over the tropical Indian Ocean.The enhanced westerlies impel an eastward withdrawal of the western Pacific subtropical high and intensify the convergence and rising motion at the lower troposphere,accelerating the burst of ASM.Differently,weaker AAO weakens the pressure gradient between the tropical and subtropical regions and delays the establishment of SCEF,resulting in a delayed onset of ASM.This study extends the leading time of seasonal forecast of ASM onset from the previous spring to winter and provides useful information about precursory signals in climate prediction operation.  相似文献   

16.
Based on the leaf area index (LAI) data derived from remote sensing information and eco-climate data, the responses of regional ecosystem variations in seasonal and interannual scales to the East Asian monsoon are studied. It is found that the vegetation ecosystems of eastern China are remarkably correlated with the East Asian monsoon in seasonal and interannual scales. In the seasonal timescale, the obvious variations of the vegetation ecosystems occur with the development of the East Asian monsoon from the south in the spring to the north in the autumn. In the interannual scale, high LAI appears in the strong East Asian monsoon year, whereas low LAI is related to the weak East Asian monsoon year. These further lead to the characteristic of "monsoon-driven ecosystem" in the eastern China monsoon region, which can be revealed by LAI.  相似文献   

17.
Based on the reanalysis data from NCEP/NCAR and other observational data,interannual variability of Mascarene high(MH) and Australian high(AH) from 1970 to 1999 is examined.It is shown that interannual variability of MH is dominated by the Antarctic oscillation(AAO),when the circumpolar low in the high southern latitudes deepens,the intensity of MH will be intensified.On the other hand,AH is correlated by AAO as well as EI Nino and South Oscillation(ENSO),the intensity of AH will be intensified when EI Nino occurs.Both correlation analysis and case study demonstrate that summer rainfall over East Asia is closely related to MH and AH.When MH intensifies from boreal spring to summer (i.e.from austral autumn to winter),there is more rainfall over regions from the Yangtze River valley to Japan,in contrast,less rainfall is found over southern China and western Pacific to the east of Taiwan,and most of regions in mid-latitudes of East Asia.Compared with MH,the effect of AH on summer rainfall in East Asia is limited to localized regions,there is more rainfall over southern China with the intensification of AH.The results in this study show that AAO is a strong signal on interannual timescale,which plays an important role in summer rainfall over East Asia.This discovery is of real importance to revealingt the physical mechanism of interannual variability of East Asian summer monsoon and prediction of summer precipitation in China.  相似文献   

18.
年际和年代际气候变化的全球时空特征比较   总被引:18,自引:3,他引:18  
5利用1950-1998年全球海洋同化分析资料和全球大气再分析资料,分析比较了全球海气系统年际和年代际变化的主要时空特征。结果表明:1)全球上层海洋年际变化主要为位于热带太平洋的ENSO模态,年代际变化最显区域中纬度海洋、赤道外热带东太平洋和大西洋及南半球高纬度区域;2)全球大气年际和年代际变化均主要位于中高纬地区尤其是两极地区,在年际时间尺度上,气温异常和气压异常没有明显的对应关系,但在年代际时间尺度上,气温增暖(变冷)常常伴随着气压的降低(升高);3)在年际时间尺度上,发生在中高纬度陆地地区的大气年际变化和主要发生在热带海洋的上层海洋年际变化没有一致性的内在联系,前主要表现为大气内部(浑沌)变化,而后主要为热带海气相互作用产生的ENSO变化;4)在年代际时间尺度上,全球海洋大气系统大约在20世纪70年代均一致性地经历了一次跃变,其结果导致80年代以来,全球大范围地区(尤其是两极和西伯利亚地区)气温明显偏暖,赤道两侧的热带东太平洋、北美和南美西海岸及非洲西海岸等海域海表温度偏高,伴随着这种全球大范围背景增暖现象,青藏高原北部地区和格陵兰岛气温具有变冷趋势,而中纬度北太平洋和南半球高纬度海域海表温度也表现为降低。  相似文献   

19.
This paper analyzes the large-scale atmospheric circulation characteristics of anomalous cases of January temperatures that occurred in Northeast China during 1960-2008 and precursory oceanic conditions.The January monthly mean surface air temperature(SAT) anomalies and the duration of low temperature are used to define temperature anomaly cases.The anomalous cyclonic circulation over northeast Asia strengthens the northerly flow in cold Januarys,while the anomalous anticyclonic circulation weakens the northerly flow in the warm Januarys.The negative(positive) North Pacific sea surface temperature anomaly(SSTA) and increased(decreased) sea ice concentration in the Barents-Kara seas in the preceding month are probably linked to the cyclonic(anticyclonic) circulation pattern over northeast Asia in the cold(warm) cases.Further analyses indicate that the preceding oceanic conditions play distinct roles in the SAT anomalies over Northeast China on different time scales.Strong relationships exist between North Pacific SSTA and the SAT in Northeast China on the interannual time scale.On the other hand,the sea ice concentration is more closely associated with the interdecadal variations of SAT in Northeast China.  相似文献   

20.
Bueh  Cholaw  Shi  Ning  Ji  LiRen  Wei  Jie  Tao  ShiYan 《科学通报(英文版)》2008,53(4):610-623
In this paper, features for the evolution of the East Asia/Pacific (EAP) events and their association with high- and mid-latitude Rossby waves during the Meiyu period are analyzed on the medium-range time scale, it is shown that life cycles of the positive and negative EAP events cannot be simply regarded as "mirror" each other. In the upper troposphere, downward propagations of Rossby wave packets both over high- and mid-latitude regions of Eurasian continent and over the Asian jet region are responsible for generating basic patterns of high- and mid-latitude anomaly centers of the events. In this layer, Rossby wave packets also propagate from the mid-latitude anomaly center to the high-latitude one. In the middle and lower troposphere, the formation of the subtropical anomaly center of the event is mainly attributed to the anomalous convective activity in the tropical Pacific warm pool. The northward Rossby wave energy dispersion from this center is favorable to the enhancement and maintenance of the mid-latitude anomaly center in the same layer. Finally, it might be hypothesized that typical features of the positive and negative EAP events in their mature phase result from the interaction between (or phase-locking of) respective anomalous circulations induced both by quasi-zonal Rossby wave packets embedded in upper troposphere westerly and by quasi-meridional Rossby wave packets in the background flow of the East Asian summer monsoon in the middle and lower troposphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号