首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对用瞬态波形存贮器统一直流、交流、脉冲磁性测量进行了试验、分析 给出测量一般原理 ,并测量了直流、脉冲退磁曲线 ,交流磁滞回线 将直流、交流测量和传统的方法进行比较 ,对脉冲测量进行定量计算 ,并讨论了误差及引起误差的原因 对测量中遇到的问题以及解决方法 ,作了说明 结果证明文中方法是可行的 ,但一些技术性细节问题还有待改进 ,从而进一步完善此方法  相似文献   

2.
刘木林  傅泉华  张士选 《应用科技》2007,34(3):26-28,35
在进行脉冲天线测量时,微波接收机必须与输入的射频脉冲保持同步,使接收机的响应最大,以减少误差、获得最好的测量精确度.在此就同步问题研究了触发延迟对脉冲天线测量的影响及其应用方式,并根据实测数据讨论了不同脉冲参数下触发延迟的选择要求及其对可重复性的影响.  相似文献   

3.
利用超声波检测流量的高精度系统   总被引:3,自引:0,他引:3  
讨论了超声波在流体内传播过程中流速补偿问题,建立了流量测量的数学模型,并给出测量系统的结构框图。针对超声检测流量中的流场分布情况,采用高电压窄脉冲信号触发超声波发射电路、高频振荡计数与相敏检波相结合的高精度在线检测方法提高测量的精度,并利用系统内存储的测量环境数据和实际测量时的温度对测量结果进行补偿,保证测量的稳定性;分析了测量误差来源以及消除误差的方法。  相似文献   

4.
针对如何在普通滚齿机上低成本地提高直廓环面蜗杆加工精度的问题,通过采用三坐标测量机对实际齿面进步坐标测量,由所得的测量结果与理论的蜗杆齿面进行比较分析,找出机床加工参数的调整误差,根据所得机床调整参数误差并基于误差补偿原理修正机床调整参数,从而明显地提高了直廓环面蜗杆的加工精度,同时,在保证有充足测点的条件下,只需沿着工件表面的一条螺旋线进行测量,使可较为准确地诊断出机床加工参数的调整误差,从而提高了蜗杆的检测效率。  相似文献   

5.
波形采样法有效值测量的同步误差分析   总被引:2,自引:0,他引:2  
从同步偏差的概念出发,对测量交流电量有效值的常用方法-波形采样法进行了同步误差分析,推导了同步误差公式,并用计算机仿真结果进一步验证了理论误差分析的结论。最后,提出了减小同步误差的措施,并有所研制的交流电机微机测试系统的实测结果进行了验证。  相似文献   

6.
对交流大电流测量装置中惯性环节的误差分析   总被引:3,自引:0,他引:3  
为了解决三相交流大电流测量装置中的“积分漂移”问题,我们科研组采用惯性环节(近似积分电路)取代积分电路。本文分别从稳态交流电流和暂态峰值电流两种测量对象以及它们的数学表达式出发,对惯性环节的误差进行理论分析,论证了这样改进积分电路的合理性,并找出了合理设计电路有关参数的途径,以便使误差限制在允许范围之内。  相似文献   

7.
将测量仪轴线矢量描述为直纹面的直母线,直母线随回转轴一起误差运动,其轨迹形成直纹面,通过建立的直纹面几何模型分析测量仪安装位姿不确定性对测量结果影响,并提出一种消除仪器安装位姿不确定性影响的评价新方法.定义了球面像误差和腰线误差去描述直纹面的误差运动范围,并通过优化得到全局不变量.采用全局不变量对主轴误差运动进行评价具有唯一性,可以剔除安装位姿不确定对测量结果的影响.通过Lion公司的双标准球测量仪实际测量得到主轴误差运动参数,通过3次安装实验优化结果对比,验证该方法的有效性.  相似文献   

8.
交流伺服系统脉冲序列位置控制研究   总被引:3,自引:0,他引:3  
提出了一种针对全数字式交流伺服电机离散控制工作状态下的建模与仿真方法.深入分析了全数字式交流伺服系统的位置脉冲控制工作模式及其表达方式,给出了速度PI控制条件下的全数字式交流伺服电机系统传递函数和系统滞留脉冲传递函数.比较全数字式交流伺服系统对不同周期、不同形状的脉冲控制序列波形响应发现,交流伺服驱动器滞留脉冲造成的速度误差主要与输入脉冲信号的加速度成正比,当速度曲线出现拐点时(加速度突变),速度误差则出现突变,突变的幅度与离散计算的重加速度成正比.这说明如果在运动控制中,必须采用加速度连续变化的加减速控制,才能避免滞留脉冲较大的突变,达到较高的运动控制精度.研究表明,无论速度输入是哪种形式,由模型计算的速度误差与实际测量结果相吻合,证明了提出方法的正确性和实用价值.  相似文献   

9.
高频雷达探测海洋表面流与常规海流计测量海流是两种不同的测量方式。本文根据2种观测方法所获取资料的不同特点,对引起2种测量方法流速测量差异的主要误差进行了分析,并采用合适的方法对这些主要误差进行了量化估计。研究发现,2种测量方法取样的空间差异、时间差异以及仪器的观测误差等是构成高频雷达与常规海流计测量结果差异的主要因素。充分考虑这些因素对流速测量的影响能较大的提高高频雷达流速对比验证的精度。  相似文献   

10.
一种提高脉冲激光测距中时间测量精度的方法   总被引:5,自引:0,他引:5  
脉冲激光测距的应用非常广泛,其中提高测距精度是该项技术的核心之一.为实现脉冲激光测距的高精度,提出一种时间间隔测量的方法.设计采用单片机控制时间测量芯片,对发射脉冲和返回脉冲信号延迟进行测量,同时利用时间测量芯片对测量结果进行自动校准,并采用定比例时点判别可减小信号变化对时点判别的影响.通过定点测量,结果表明该方法简化了器件设计,达到了较高的测距精度,最后分析了影响脉冲激光测距精度的误差的原因.  相似文献   

11.
刘元珍 《科技信息》2012,(20):301-301
本文提出了基于Bloom Filters的流抽样算法,对测量间隔内到达的报文进行抽样,并采用Bloom Filters哈希结构映射到流信息表来创建和维护流信息。该方法具有灵活性、简单性,在误差允许的情况下,有效地减少了流测量所需的存储空间。  相似文献   

12.
利用脉冲梯度场技术,可采用自旋回波或梯度加波方法在单次或数次实验中获得高分辨的反映相位特性的特形脉冲激发轮廓,实验测量的关键在于准确确定回波汇集时间,由于脉冲梯度场的不完善,实验测量中任何回波时间确定的偏差将造成激发轮廓的线性相位误差,该文利用相位预补偿方法对实验测量的细节进行了讨论。  相似文献   

13.
数字图像相关方法中,位移场测量的误差大小与算法的迭代次数通常成反比,要获得较低的误差,必须增加迭代次数,从而增加了计算量;而非迭代的方法误差相对较大。为解决这一问题,提出了一种基于BP神经网络的误差补偿方法。选择基于非迭代光流法的位移场测量方法为算法模型,详细分析了该算法本身存在的截断误差,以模拟散斑图的位移测量值及其误差为数据集,用训练好的神经网络误差预测模型对测量结果进行补偿。实验验证结果表明,补偿后的位移测量误差相较原来总体下降了50%左右,测量误差的统计分布也显著下降。  相似文献   

14.
介绍了测量不确定评定的方法和步骤,并对模拟式交流电压表示值误差测量结果的不确定度进行了分析评定。  相似文献   

15.
基于普通编码器的高精度位置检测方法   总被引:2,自引:0,他引:2  
根据普通增量式光电编码器测量转角位置的原理,分析了量化误差的形成原因和编码器脉宽制造误差对测量精度的影响,提出了新的信号处理算法——脉冲细分法,利用该方法减小了量化误差.同时标定出编码器的脉宽系数井以它作为脉宽制造误差的补偿参数,消除对位置测量造成的影响,最终提高了系统的测量精度.  相似文献   

16.
本文分析了泄漏电流测试仪交流漏电流示值误差测量结果的不确定度  相似文献   

17.
为解决线阵CCD空间滤波技术无法直接测量滚筒颗粒流速度场的整体分布,并且难以准确测量颗粒流中具有复杂速度变化的单点区域的问题,提出了基于面阵CCD空间滤波技术的滚筒颗粒流测量方法。通过对采集图片进行分割,模拟子滤波器,对每个模拟子滤波器区域分别进行空间滤波测速,最终得到滚筒颗粒流速度场整体分布。对于滚筒颗粒流中具有复杂速度变化的边壁区域采用正交算法进行速度矢量和运算,避免了角度测量的误差,从而提高了对单点位置速度测量的精度。最后,搭建了实验装置,对测量方法进行了实验验证,并分析了方法时空分辨率,标定了方法精度。研究结果表明,该方法能够测量滚筒颗粒流速度场整体分布,测量误差小于2%。  相似文献   

18.
在动态参数测量中,测量系统的工作频带不够宽,将引起整个波形的畸变。文章在分析常见动态误差修正法存在的问题中,指出由单个实测波形用反算法求输入波形存在的困难,提出了一种新的修正方法,即用方波脉冲函数方法进行正向曲线拟合,较好地解决了单个实测波形复原的问题。  相似文献   

19.
基于脉动流对孔板流量计影响的基本原理,介绍了孔板流量计在脉动流测量中产生误差的原因及误差的分析方法。针对实际过程,实验研究了复杂脉动流对孔板流量计测量误差影响,得到复杂脉动流条件下孔板流量计计量误差的估计方法和应用时应注意的问题。  相似文献   

20.
干涉拼接测量技术主要用于大口径光学器件的测量,由于其能够测量出被测表面的细节,也开始应用于非球面的测量.拼接测量面临的主要问题是拼接测量过程中的误差累积,如何消除拼接误差,尤其对非球面拼接测量的误差修正,是干涉拼接测量的技术关键.本文就拼接误差修正中难以解决的随机误差与高阶波像差问题进行了研究,在研究拼接测量中所引入的误差的基础上,建立了拼接测量的误差修正模型,并提出误差随机修正的方法,实现随机误差和高阶波像差修正.根据所建立的模型和误差修正方法,进行实验验证,实验结果表明,利用误差随机修正技术能够修正随  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号