首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用X射线衍射和磁性测量研究Co80 xZr20-x(x=0,1,2,3,4)合金、快淬薄带的结构与磁性. 结果表明, 所有样品的比饱和磁化强度均较大, 且在实验范围内随退火温度的升高而增加;经750 ℃热处理2 h后, Co81Zr19样品的比饱和磁化强度达到最大值128 (A*m2)/kg;Co82Zr18快淬样品在25 m/s速率下的矫顽力最大, 为60 kA/m, 根据该样品中Co5Zr相的含量较大可知, Co5Zr相为Co-Zr合金的硬磁相;由初始磁化曲线可知, 所有样品的矫顽力机制为成核模型.  相似文献   

2.
通过在Hf15Co78B7合金中添加微量W的方法, 制备Hf15-xCo78B7Wx(x=0,1,2,3)快淬合金薄带, 并利用磁性测量、 X射线衍射、 热磁分析与扫描电子显微镜考察其磁性能、 相组成[KG*8]和微结构. 结果表明: Hf15Co78B7合金中添加适量的W可明显提高其矫顽力(HC); Hf13Co78B7W2 薄带由Co7Hf相及少量fcc-Co相组成, W原子进入Co7Hf相的晶格中, 使Co7Hf相的Curie温度(TC)降低, 磁晶各向异性场(Ha)增加; 合金的晶粒尺寸明显减小.  相似文献   

3.
采用直流磁控溅射方法, 在Si(100)单晶衬底上制备γ′-Fe4N纳米晶薄膜样品, 并利用X射线衍射(XRD)和振动样品磁强计(VSM)对样品的结构和磁性进行测试分析, 给出了比饱和磁化强度及矫顽力与温度的关系. 结果表明, 样品沿(111)晶面择优生长, 具有单一的易磁化方向, 且易磁化方向平行于(111)晶面. 随着测量温度的降低, γ′-Fe4N纳米晶薄膜样品的比饱和磁化强度σs增加, 矫顽力Hc增大, 剩磁比σrs减小. 通过理论拟合确定了比饱和磁化强度与矫顽力随温度的变化关系, 矫顽力随温度的变化满足T1/2规律, 比饱和磁化强度σs与温度不满足Bloch的T3/2规律, 表明在80~350 K温度范围内自旋波之间存在较强的相互作用.   相似文献   

4.
用单辊快淬法制备Fe_(74)Nb_3Y_3B_(20)非晶合金,在不同温度下对合金进行热处理,利用差热分析仪(DTA,TG/DTA-6300)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)和振动样品磁强计(VSM)等测试方法对合金的微观结构和磁性能进行研究.结果表明,合金经热处理后有α-Fe相和少量的Fe_(23)B_6和Fe_2B析出,热处理后合金饱和磁化强度比淬态的高,矫顽力都比较小,670℃退火的合金具有最高的饱和磁化强度.  相似文献   

5.
采用单辊快淬法制备Fe81-xCoxZr9B10(x=0,2,4,6)系非晶合金,对该系非晶合金的非晶形成能力及磁性能进行研究.利用X射线衍射(XRD)和振动样品磁强计(VSM)测试合金的结构及磁性能.研究结果表明:Fe81-xCoxZr9B10(x=0,2,4,6)合金在快淬速率为30 m/s时完全形成非晶.随Co含量的增加比饱和磁化强度(Ms)先增加后减少.  相似文献   

6.
对Ni53Mn23.5Ga23.5-○xTix(x=0,2,5和8)系列合金的微观组织、马氏体相变及磁性能进行了研究,探究不同制备方法和不同Ti含量对合金性能的影响规律.研究结果表明:随着Ti含量的增加,合金的晶粒变细且析出物数量显著增加,适量的韧性第二相析出有助于改善合金的高脆性,合金的马氏体相变温度和饱和磁化强度均降低.EDS能谱分析表明,Ti掺杂合金的析出物是富Ni和Ti的第二相.对于Ti0和Ti2合金,900r/min甩带样品的饱和磁化强度与铸态样品基本相同,但Ti5和 Ti8甩带样品的磁化强度明显高于铸态,这是甩带工艺抑制非磁性的第二相析出所致.  相似文献   

7.
采用溶胶-凝胶法制备(CoFe2O4x/(SiO21-x纳米复合材料. 利用X射线衍射(XRD)和振动样品磁强计(VSM)研究样品结构、 晶粒尺寸及磁性. 结果表明, 随SiO2含量增加, 样品的晶粒尺寸减小, 比饱和磁化强度和矫顽力降低.   相似文献   

8.
采用熔体快淬+晶化处理方法制备宽度为4mm、厚度为30μm的(FeCo)73.5Cu1Nb3Si13.5B9纳米晶软磁合金,并用XRD和TEM对其微结构进行表征。研究结果表明:(FeCo)73.5Cu1Nb3Si13.5B9于600℃晶化处理15min后具有较高的饱和磁化强度(1、30T)和较小的矫顽力(4.61A/m);提高晶化温度至700℃,合金的软磁性能迅速降低,饱和磁化强度为1.02T,矫顽力增大至1.95kA/m:于600℃晶化处理5min时,合金主要由非晶构成,同时有少量α-Fe(Si)相;于600℃晶化处理15min后合金由α-Fe(Si)主相和少量残余非晶相构成,α-Fe(Si)相的晶粒粒径约为15nm;于700℃晶化处理15min后,合金由α-Fe(Si)相、残余非晶相和少量Fe3B相构成,α-Fe(Si)相的晶粒粒径约为27.9nm。Fe3B相的形成、α-Fe(Si)相晶粒粒径的长大和晶格常数的增大直接导致合金软磁性能下降。  相似文献   

9.
采用单辊快淬法制备了Fe74B20Hf6合金的非晶薄带,为确定其晶化温度,测试了该非晶合金的差热曲线,研究其淬态下及退火后的结构和磁性能,并测其XRD图谱和磁性能.结果表明:该非晶合金晶化温度较高.表现出了较大的热稳定性、较强的玻璃形成能力,具有高饱和磁化强度,较小的矫顽力,表现出了较好的软磁性能.  相似文献   

10.
用快淬工艺合成并得到立方NaZn13结构的LaCo13-xAlx (1.2≤x≤2.4)系列三元金属间化合物, XRD测量结果表明, 在1.2≤x≤2.4内, 快淬速度为30 m/s时制备出的快淬薄带均具有立方NaZn13型结构. 用振动样品磁强计(VSM)和超导量子磁强计(SQUID)对快淬薄带的磁性进行研究. 由于无磁性的Al原子对Co原子的稀释作用, 使得低温饱和磁矩随Al含量的增加而降低, 实际测定的饱和磁矩比稀释模型的下降速度快, 表明加入金属Al不仅减少了Co原子的数量, 同时也降低了Co原子的磁矩.   相似文献   

11.
对靶磁控溅射FeCoN薄膜的结构与磁性   总被引:1,自引:0,他引:1  
利用改进后的对靶磁控溅射系统,  以N2/Ar混合气体为溅射气体,  在未加热的Si(111)衬底上沉积FeCoN薄膜.  采用X射线衍射仪(XRD)、 透射电子显微镜(TEM)、 扫描电子显微镜(SEM)和超导量子干涉仪(SQUID)研究不同Co靶溅射功率对FeCoN薄膜样品的结构、 形貌和磁性性能的影响.  结果表明: 固定Fe靶功率为160 W(电流I=0.4 A),  当Co靶功率为2.4 W(I=0.04 A)时,  薄膜由Co溶入ε-Fe3N中形成的ε-(Fe,Co)3N化合物相构成; 当Co靶功率为58 W(I=0.2 A)时,  获得了Fe3N/Co3N化合物相,  薄膜的饱和磁化强度(Ms)为151.47 A·m2/kg,  矫顽力(Hc)为3.68 kA/m; 当Co靶功率为11.9 W(I=0.07 A)时,  制备出具有高饱和磁化强度的α″-(Fe,Co)16N2化合物相,  薄膜的Ms=265.08 A·m2/kg,  Hc=8.24 kA/m.    相似文献   

12.
利用甘氨酸作为燃料和配合剂, 采用自蔓延燃烧法制备纳米晶钴铁氧体, 并通过X射线衍射、 扫描电子显微镜和振动样品磁强计表征样品的结构和磁性能. 结果表明, 平均晶粒尺寸对样品的磁性能影响较大, 晶粒尺寸随烧结温度的变化而变化, 并得到了矫顽力Hc和比饱和磁化强度σs随烧结温度的变化曲线.   相似文献   

13.
采用磁控溅射法制备Dy4(Co21Cu79)96颗粒膜,研究薄膜的巨磁电阻(GMR)效应及磁性能.应用X射线衍射仪(XRD)对薄膜微观结构随退火温度的变化进行分析,采用四探针及振动样品磁强计(VSM)测量薄膜的磁电阻和磁性能.X射线衍射实验结果表明:制备态的薄膜形成了单相亚稳态面心合金结构,退火处理将促进Cu和Co的相分离.磁电阻测试发现:所有不同成分的Dyx(Co21Cu79)100-x(x=0,4,8,9,12,14)薄膜样品均随着退火温度的升高,颗粒膜巨磁电阻(GMR)效应不断增大,当达到最佳退火温度之后,GMR值又随退火温度的升高而降低.当退火温度为425℃时,Dy4(Co21Cu79)96薄膜的巨磁电阻效应达到最大,GMR值为-4.68%.退火前后样品磁滞回线的变化表明薄膜中发生了从超顺磁性到铁磁性的转变,矫顽力Hc随退火温度的升高逐渐增大.  相似文献   

14.
通过溶剂热法合成了La-Co共掺杂的Ba1-xLaxFe12-xCoxO19(x=0、0.1、0.15、0.2和0.25)系列纳米材料样品.X-射线衍射分析结果发现:低掺杂量制备的样品是单相的,但随着La-Co掺杂量的增加,出现了第2相LaFeO3.用扫描电子显微镜观察了样品的微观形貌,在低掺杂量时,样品呈现明显的片状六角结构,具有较好的分散性.随着掺杂浓度的升高,样品的六角形形貌变得不明显,而且颗粒出现了明显的团聚现象.磁性测量表明:当La-Co掺杂量x=0.1时,矫顽力达到最大值为5 831 Oe,且饱和磁化强度降低缓慢,几乎不变; 随着La-Co掺杂量的进一步增加,饱和磁化强度和矫顽力均出现不同程度的降低,这可能源于La-Co离子掺杂效应和第2相LaFeO3的出现.研究结果揭示了适量的La-Co掺杂BaFe12O19六角铁氧体在高密度磁存储方面具有潜在的应用前景.  相似文献   

15.
系统研究了快淬Cox/Cu100-x(5≤X≤30)合金的磁性以及退火处理对磁性的影响。随退火温度的上升,Co颗粒在长大。当Co含量增加时,饱和磁化强度Ms和箸顽力Hc增大。Co含量少的样品,退火处理对磁化曲线影响大,Co含量多的样品与之相反。随退火温度TA升高,矫顽力Hc和剩余磁化强度Mr增大。在特征冻结温度(300K)下观察到一个大热滞效应。这个热滞温度远大于在ZFC曲线的峰值温度,这表明磁性颗粒的尺寸及形状有一较宽的分布。  相似文献   

16.
采用化学共沉法制备了CoFe2-xAlxO4(x=0.1~0.5)铁氧体纳米粉料,并在不同温度下进行退火处理,利用X射线衍射仪(XRD)、振动样品磁强计(VSM)对样品的结构和磁性进行了测量和分析.结果表明:所有样品均形成了单一的尖晶石相,晶粒尺寸为35~45nm;经1280℃退火后的样品能同时获得较高的比饱和磁化强度如和矫顽力Hc;随铝代换量x的增大,比饱和磁化强度起初变化平缓然后迅速降低,而矫顽力却呈现出了先增后减的趋势,在x=0.3附近出现峰值。  相似文献   

17.
用自制真空熔体喷溅快速冷却设备制作了6种成分Bi-Mn合金薄带,用X射线衍射仪及振动样品磁强计测量了淬态及退火态试样的物相及磁性,得到饱和磁化强度与剩磁随含Mn量的线性变化关系,及矫顽力随含Mn量的变化具有峰值存在。从磁性测量数据导出淬态试样中Mn在Bi中的固溶度扩展至2.4重量%。在含16%试样中获得较多的MnBi淬火高温相,在此样品的淬火高温相中的Mn含量约占10重量%。  相似文献   

18.
以SmCo5为原型,设计了3种中熵金属间化合物(Sm1/3Ce1/3Pr1/3)Co5、(Sm1/3Ce1/3Nd1/3)Co5、(Sm1/3Pr1/3Nd1/3)Co5和1种高熵金属间化合物(Sm1/4Ce1/4Pr1/4Nd1/4)Co5,并采用原子半径差和混合焓预测了形成单相结构的可能性. 应用真空电弧熔炼技术成功制备了4种金属间化合物. 采用X射线衍射仪(XRD)、能谱仪(EDS) 和振动样品磁强计(VSM) 表征了样品的物相、成分和磁学性能. 结果表明:4种化合物均为单相,具有六方CaCu5结构,空间群为P6/mmm,稀土原子占据1a位置;稀土位置上的原子浓度为等原子比;化合物的室温磁化行为遵循Langevin模型,磁化强度依赖于化合物的成分;磁价模型计算证实了化合物(Sm1/3Ce1/3Pr1/3)Co5、(Sm1/3Ce1/3Nd1/3)Co5和(Sm1/4Ce1/4Pr1/4Nd1/4)Co5中的Ce为+4价,对磁矩没有贡献.  相似文献   

19.
采用X-ray衍射、高能X-ray衍射、透射电子显微镜及振动样品磁量计等表征手段,研究了不同制备工艺对Fe3O4纳米粒子的平均晶粒尺寸及磁性能的影响.结果表明多元醇方法所制备的Fe3O4粉体平均粒径为32 nm,其饱和磁化强度为6.8×10-3A/m(该值比块体Fe3O4的饱和磁化强度约降低了8%),剩磁Mr=4.2×10-3A/m,矫顽力Hc=1.43×10-2T;通过共沉淀方法得到的Fe3O4粉体平均粒径显著减小为7 nm,但是其饱和磁化强度也明显降低为3.3×10-4A/m,比块体Fe3O4的饱和磁化强度减小约96%,剩磁及矫顽力也下降为零.这是由于小尺寸效应导致出现超顺磁现象,说明Fe...  相似文献   

20.
采用单辊快淬法制备Fe81Zr9-xNbxB10(x=2,4,6)系非晶合金,并对该系非晶合金进行不同温度热处理.利用X射线衍射(XRD)和振动样品磁强计(VSM)测试合金的结构和磁性能.实验表明,α-Fe铁磁相析出的起始晶化温度随Nb含量的增加而升高.快淬态合金的比饱和磁化强度(Ms)随Nb含量的增加而减小.三种合金的Ms均随退火温度的升高而增大,这与铁磁和反铁磁的交换耦合作用有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号